Olap and data mining technologies' integration in the construction of interdimensional associative rules in multidimensional data

Authors

  • Микола Тихонович Фісун Petro Mohyla Black Sea State University 10, 68-Desantnykiv Street, Mykolaiv, Ukraine, 54003, Ukraine
  • Гліб Валентинович Горбань Petro Mohyla Black Sea State University 10, 68-Desantnykiv Street, Mykolaiv, Ukraine, 54003, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.43994

Keywords:

OLAP, Data Mining, multidimensional data, cube, association rules, objective set, support, confidence, lift, leverage

Abstract

The features of associative rules in multidimensional data searching are presented in the article, specifically theoretical basis of association searching between different dimensions in OLAP cubes and formulas of their significance characteristics (support, confidence, lift, leverage) calculation are shown. The method of interdimensional association rules generation is proposed. The implementation of this method as a component of operative and intellectual data analysis information system on database management system Caché platform is described.

Author Biographies

Микола Тихонович Фісун, Petro Mohyla Black Sea State University 10, 68-Desantnykiv Street, Mykolaiv, Ukraine, 54003

Professor

Department of Intelligent Information Systems

Гліб Валентинович Горбань, Petro Mohyla Black Sea State University 10, 68-Desantnykiv Street, Mykolaiv, Ukraine, 54003

Department of Intelligent Information Systems

References

Chaudhuri, S. (1998). Data Mining and Database Systems: Where is the Intersection? Data Engineering Bulletin, 21 (1), 4–8.

Chaudhuri, S., Fayyad, U., Bernhardt, J. (1999). Scalable classification over SQL databases. Proceedings 15th International Conference on Data Engineering (Cat. No.99CB36337). doi: 10.1109/icde.1999.754963

Meo, R., Psaila, G., Ceri, S. (1996). A New SQL-like Operator for Mining Association Rules. In Proceedings of the 22nd International Conference on Very Large Data Bases Conference (VLDB’1996), Bombay, India, 122–133.

Zhu, H. (1998). Online analytical mining of association rules. Master’s thesis, Simon Faster University, Burnaby, British Columbia, Canada.

Fayyad U., Piatetsky-Shapiro G., Smyth P., Uthurusamy R. (1996). Advances in Knowledge Discovery and Data Mining. AAAI/MIT Press.

Messaoud, R. B., Boussaid, O., Rabaséda, S. L. (2006). A Data Mining-Based OLAP Aggregation of Complex Data. International Journal of Data Warehousing and Mining, 2 (4), 1–26. doi: 10.4018/jdwm.2006100101

Han, J. (1998). Towards on-line analytical mining in large databases. SIGMOD Rec., 27 (1), 97–107. doi: 10.1145/273244.273273

Chen, Q., Dayal, U., Hsu, M. (2000). An OLAP-based Scalable Web Access Analysis Engine. Lecture Notes in Computer Science, 210–223. doi: 10.1007/3-540-44466-1_21

Goil, S., Choudhary, A. (1998). High performance multidimensional analysis of large datasets. Proceedings of the 1st ACM International Workshop on Data Warehousing and OLAP - DOLAP ’98. doi: 10.1145/294260.294269

Pinto H., Han J., Pei J., Wang K., Chen Q., Dayal U. (2001). Multi-dimensional sequential pattern mining. In CIKM ’01: Proceedings of the tenth international conference on Information and knowledge management, New York, NY, USA,. ACM Press, 81–88.

Goil, S., Choudhary, A. (2001). PARSIMONY: An Infrastructure for Parallel Multidimensional Analysis and Data Mining. Journal of Parallel and Distributed Computing, 61 (3), 285–321. doi: 10.1006/jpdc.2000.1691

Tjioe, H.C., Taniar, D. (2005). Mining Association Rules in Data Warehouses. International Journal of Data Warehousing and Mining, Idea Group Inc., 1 (3), 28–62.

Parsaye, K. (1997). OLAP and Data Mining: Bridging the Gap. Database Programming and Design, 10, 30–37.

Sarawagi, S., Agrawal, R., Megiddo, N. (1998). Discovery-driven exploration of OLAP data cubes. Lecture Notes in Computer Science, 168–182. doi: 10.1007/bfb0100984

Robin, J., Favero, E. (2001). HYSSOP: Natural Language Generation Meets Knowledge Discovery in Databases. In Proceedings of the 3rd International Conference on Information Integration and Web-based Applications and Services (iiWAS’2001).

Fisun, M., Horban, H. (2011). Analysis of specific features of the objective and multidimensional data models in DBMS Caché. Bulletin of Kherson National Technical University, 2 (41), 116–124.

Gorban', G. V. (2013). Zastosuvannja B*-derev dlja stvorennja ta obchislennja OLAP-kubіv z vikoristannjam kombіnatornogo algoritmu. Har'kov, Tehnologicheskij audit i rezervy proizvodstva, 5/4 (13), 10–12. Available at: http://journals.uran.ua/tarp/article/view/18216/15955

Published

2015-06-21

Issue

Section

Technical Sciences