An activity of caspase-3 and cathepsin D at the different subtypes of ischemic stroke

Authors

  • Наталія Романівна Сохор SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001, Ukraine https://orcid.org/0000-0002-0946-7067
  • Світлана Іванівна Шкробот SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001, Ukraine
  • Олена Юріївна Бударна SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001, Ukraine https://orcid.org/0000-0002-9449-8094
  • Оксана Романівна Ясний SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2015.45158

Keywords:

acute period of ischemic stroke, apoptosis, caspase-3, cathepsin D

Abstract

Aim of research – To define the dynamics of activity of caspase-3, cathepsin D, apoptosis of leukocytes at the different subtypes of ischemic stroke (IS) in an acute period.

Methods. There were examined 232 patients in an acute period of ІS: 56 (24,1%)- with hemodynamic (HDS), 62 (2,.7%) – with atherothrombotic (АТS), 60 (25,9%) – with cardioembolic (CЕS) і 54 (23,3%) – with lacunar stroke (LS). There was defined the number of leukocytes at the stage of apoptosis (ANV+-cells), necrosis (PI+-cells), with an increased content of the active forms of oxygen (AFO+-cells) and with lowered mitochondrial potential (Mito+-cells), activity of caspase-3 and cathepsin D.

Results. It was established that at all subtypes of IS mitochondrial dysfunction, apoptosis and necrosis of leukocytes are observed on the 1st day it were presented in increase of content of  ANV+-, PI+-, АFO+- and Mito+-cells and were the mostly apparent at ATS.   The highest activity of caspase-3 on the 1st day was noticed at LS it did not correlate with a number of cells at the stage of apoptosis and probably was connected with a predominant impact of caspase-3 on endothelium and with hyperpermeability of hematoencephalic barrier. In patients with ATS an activity of cathepsin D increased during the 1st week of disease that can indicate an activation of lysosomal way of activation of apoptosis that courses parallel to an apoptosis connected with mitochondrial dysfunction.

Conclusions.  The different ways of apoptotic cellular death that depends on subtype of stroke activate in an acute period of IS

Author Biographies

Наталія Романівна Сохор, SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001

Candidate of Medical Science, associate professor

Department of Neurology, Psychiatry, Narcology and Medical Psychology

Світлана Іванівна Шкробот, SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001

MD, Professor

Department of Neurology, Psychiatry, Narcology and Medical Psychology

Олена Юріївна Бударна, SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001

Candidate of Medical Science, Associate Professor

Department of Neurology, Psychiatry, Narcology and Medical Psychology

Оксана Романівна Ясний, SHEI «Тernopil State Medical University by I.Ya. Horbachevsy Ministry of Health of Ukraine» 1 Maydan Voli, Ternopil, Ukraine, 46001

Candidate of Medical Science, Associate Professor

Department of Pediatrics of Postgraduate Education Faculty

References

Kelly, P. J., Morrow, J. D., Ning, M., Koroshetz, W., Lo, E. H., Terry, E. et. al. (2007). Oxidative Stress and Matrix Metalloproteinase-9 in Acute Ischemic Stroke: The Biomarker Evaluation for Antioxidant Therapies in Stroke (BEAT-Stroke) Study. Stroke, 39 (1), 100–104. doi: 10.1161/strokeaha.107.488189

Broughton, B. R. S., Reutens, D. C., Sobey, C. G. (2009). Apoptotic Mechanisms After Cerebral Ischemia. Stroke, 40 (5), e331–e339. doi: 10.1161/strokeaha.108.531632

Sugawara, T., Noshita, N., Lewén, A. et. al. (2002). Overexpression of copper/zinc superoxide dismutase in transgenic rats protects vulnerable neurons against ischemic damage by blocking the mitochondrial pathway of caspase activation. J Neurosci, 22 (1), 209–217.

Rami, A., Sims, J., Botez, G., Winckler, J. (2003). Spatial resolution of phospholipid scramblase 1 (PLSCR1), caspase-3 activation and DNA-fragmentation in the human hippocampus after cerebral ischemia. Neurochemistry International, 43 (1), 79–87. doi: 10.1016/s0197-0186(02)00194-8

Boya, P., Kroemer, G. (2008). Lysosomal membrane permeabilization in cell death. Oncogene, 27 (50), 6434–6451. doi: 10.1038/onc.2008.310

Conus, S., Pop, C., Snipas, S. J., Salvesen, G. S., Simon, H.-U. (2012). Cathepsin D Primes Caspase-8 Activation by Multiple Intra-chain Proteolysis. Journal of Biological Chemistry, 287 (25), 21142–21151. doi: 10.1074/jbc.m111.306399

Carew, J. S., Espitia, C. M., Esquivel, J. A., Mahalingam, D., Kelly, K. R., Reddy, G. et. al. (2010). Lucanthone Is a Novel Inhibitor of Autophagy That Induces Cathepsin D-mediated Apoptosis. Journal of Biological Chemistry, 286 (8), 6602–6613. doi: 10.1074/jbc.m110.151324

Kaschina, E., Scholz, H., Steckelings, U. M., Sommerfeld, M., Kemnitz, U. R., Artuc, M. et. al. (2009). Transition from atherosclerosis to aortic aneurysm in humans coincides with an increased expression of RAS components. Atherosclerosis, 205 (2), 396–403. doi: 10.1016/j.atherosclerosis.2009.01.003

Dingle, J. T., Barrett, A. J., Weston, P. D. (1971). Cathepsin D Characteristics of immunoinhibition and the confirmation of a role in cartilage breakdown Biochem. J., 123, 1–13.

Karaflou, M., Lambrinoudaki, I., Christodoulakos, G. (2008). Apoptosis in Atherosclerosis: A Mini-Review. Mini-Reviews in Medicinal Chemistry, 8 (9), 912–918. doi: 10.2174/138955708785132765

Liang, J.-M., Xu, H.-Y., Zhang, X.-J., Li, X., Zhang, H.-B., Ge, P.-F. (2013). Role of mitochondrial function in the protective effects of ischaemic postconditioning on ischaemia/reperfusion cerebral damage. Journal of International Medical Research, 41 (3), 618–627. doi: 10.1177/0300060513476587

Zehendner, C. M., Librizzi, L., Hedrich, J., Bauer, N. M., Angamo, E. A., de Curtis, M., Luhmann, H. J. (2013). Moderate Hypoxia Followed by Reoxygenation Results in Blood-Brain Barrier Breakdown via Oxidative Stress-Dependent Tight-Junction Protein Disruption. PLoS ONE, 8 (12), e82823. doi: 10.1371/journal.pone.0082823

Lee, S.-R., Lo, E. H. (2004). Induction of Caspase-Mediated Cell Death by Matrix Metalloproteinases in Cerebral Endothelial Cells After Hypoxia–Reoxygenation. Journal of Cerebral Blood Flow & Metabolism, 24 (7), 720–727. doi: 10.1097/01.wcb.0000122747.72175.47

Lankiewicz, S., Marc Luetjens, C., Nguyen Truc Bui, Krohn, Aaron J., Poppe, Monika et. al. (2000). Activation of calpain I converts ex citotoxic neuron death into a caspase-independent cell death. Journal of Biological Chemistry, 275 (22), 17064–17071. doi: 10.1074/jbc.275.22.17064

Matulevicius, S., Rohatgi, A., Khera, A., Das, S. R., Owens, A., Ayers, C. R. et. al. (2008). The association between plasma caspase-3, atherosclerosis, and vascular function in the Dallas Heart Study. Apoptosis, 13 (10), 1281–1289. doi: 10.1007/s10495-008-0254-1

Heinrich, M., Neumeyer, J., Jakob, M., Hallas, C., Tchikov, V., Winoto-Morbach, S. et. al. (2004). Cathepsin D links TNF-induced acid sphingomyelinase to Bid-mediated caspase-9 and -3 activation. Cell Death Differ, 11 (5), 550–563. doi: 10.1038/sj.cdd.4401382

Madge, L. A., Li, J.-H., Choi, J., Pober, J. S. (2003). Inhibition of Phosphatidylinositol 3-Kinase Sensitizes Vascular Endothelial Cells to Cytokine-initiated Cathepsin-dependent Apoptosis. Journal of Biological Chemistry, 278 (23), 21295–21306. doi: 10.1074/jbc.m212837200

Broker, L. E. (2005). Cell Death Independent of Caspases: A Review. Clinical Cancer Research, 11 (9), 3155–3162. doi: 10.1158/1078-0432.ccr-04-2223

Published

2015-06-29

Issue

Section

Medical