Dynamic correction application in control systems of inertial technological objects

Authors

  • Юрий Михайлович Ковриго Kiev Polytechnic Institute National Technical University of the Ukraine 37 Pobedy ave., Kiev, Ukraine, 03056, Ukraine
  • Александр Сергеевич Бунке Kiev Polytechnic Institute National Technical University of the Ukraine 37 Pobedy ave., Kiev, Ukraine, 03056, Ukraine
  • Павел Валерьевич Новиков Kiev Polytechnic Institute National Technical University of the Ukraine 37 Pobedy ave., Kiev, Ukraine, 03056, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2016.58815

Keywords:

УДК 62-503.57

Abstract

The paper considers dynamic correction method to achieve the required safety factor, regulatory inertia objects under changing operational conditions. Structural solutions of correction channel are proposed and their tuning methods are given. Simulation of transients is completed, calculation and comparison of quality control indexes are given. The application of these techniques ensures sufficient stability margin while maintaining the quality of functioning regulatory systems

Author Biographies

Юрий Михайлович Ковриго, Kiev Polytechnic Institute National Technical University of the Ukraine 37 Pobedy ave., Kiev, Ukraine, 03056

Candidate of Technical Sciences, Professor

Department of automation of heat-and-power engineering processes 

Александр Сергеевич Бунке, Kiev Polytechnic Institute National Technical University of the Ukraine 37 Pobedy ave., Kiev, Ukraine, 03056

Candidate of Technical Sciences, Docent

Department of automation of heat-and-power engineering processes 

Павел Валерьевич Новиков, Kiev Polytechnic Institute National Technical University of the Ukraine 37 Pobedy ave., Kiev, Ukraine, 03056

Department of automation of heat-and-power engineering processes 

References

O’Dwyer, A. (2010). Handbook of PI and PID controller tuning rules. ICP, 623.

Astrom, K. J., Hagglund, T. (1995). PID controllers: Theory, design, and tuning. NC: Instrument Society of America, Research Triangle Park, 354. Available at: https://aiecp.files.wordpress.com/2012/07/1-0-1-k-j-astrom-pid-controllers-theory-design-and-tuning-2ed.pdf

Morari, M., Zafiriou, E. (1989). Robust process control. New Jersey: Prentice Hall-Englewood Cliffs, 479.

Vilanova, R. (2008). IMC based Robust PID design: Tuning guidelines and automatic tuning. Journal of Process Control, 18 (1), 61–70. doi: 10.1016/j.jprocont.2007.05.004

Alcántara, S., Pedret, C., Vilanova, R., Skogestad, S. (2011). Generalized Internal Model Control for Balancing Input/Output Disturbance Response. Industrial & Engineering Chemistry Research, 50 (19), 11170–11180. doi: 10.1021/ie200717z

Kovrygo, J. M., Konovalov, M. A., Bunke, A. S. (2012). Pat. 67725 UA. Sposob avtomaticheskogo regulirovanija parametrov inercionnyh obectov s zapazdyvaniem. Promyshlennaja sobstvennost. № 5.

Kovrygo, J. M., Konovalov, M. A., Bunke, A. S. (2012). Modernizacija sistemy teplovoj nagruzkoj prjamotochnogo kotloagregata TES s ispolzovaniem dinamicheskogo korrektora. Teploenergetika, 10, 43–49.

Shinskey, F. G. (2001). PID-deadtime control of distributed processes. Control Engineering Practice, 9 (11), 1177–1183. doi: 10.1016/s0967-0661(01)00063-6

Published

2016-01-25

Issue

Section

Technical Sciences