The state of bronchi remodeling in school-age children with bronchial asthma at the Glutathione-S-Transferase gene polymorphism

Authors

  • Олена Костянтинівна Колоскова Bukovinian State Medical University 2 Theatre squ., Chernivtsi, Ukraine, 58002, Ukraine
  • Галина Анатоліївна Білик Bukovinian State Medical University 2 Theatre squ., Chernivtsi, Ukraine, 58002, Ukraine

DOI:

https://doi.org/10.15587/2313-8416.2016.59327

Keywords:

bronchial asthma, bronchi remodeling, glutathione-s-transferase, gene polymorphism, school children

Abstract

The aim of research was to establish connection between the bronchi remodeling processes and allelic polymorphism of GSTT1 and GSTM1 genes in school-age children with bronchial asthma (BA) for optimization of results of the basic treatment.

Methods: 66 school children with bronchial asthma in the period without attacks underwent the complex examination. All patients underwent general clinic and spirographic examination, point assessment of the bronchial asthma controllability with the help of clinically-instrumental evaluation scale, the analysis of the sample of capillary blood by the method of multiplex polymerase chain reaction (PCR) for detecting the deletions in glutathione-s-transferase genes that is GSTT1 and GSTM1.

Results: As the result of molecular and genetic analysis of studying of GSTT1 and GSTM1 genes polymorphism there were demonstrated that the (GSTT11+) genotype homozygous on the normal copies was more often and took place in 40,9% of children, «null genotype» -in 9 patients (13,64 %), GSTT11+ genotype was equally often, whereas the heterozygous GSTT1+М1- genotype was detected in every third patient (31,82 %).

Conclusions: The deletion polymorphism of GSТT1 and GSТM1 in homozygous state (so called “null genotype” is three times less often in school children with bronchial asthma comparing with patients with GSTT11+ genotype, it raises more than twice the risk of the heavy clinical course of disease, associates with the low indices of bronchi lability. In patients with bronchial asthma even at preserved structure of glutathione-s-transferase genes (GSTT11+ genotype) the continuous contact with the tobacco smoke in family raises the content of endothelial factor of vessel growth (EFVG) in sputum in 1,25 times that underlines the more aggressive remodeling of respiratory tracts

Author Biographies

Олена Костянтинівна Колоскова, Bukovinian State Medical University 2 Theatre squ., Chernivtsi, Ukraine, 58002

Professor, Doctor of medical sciences, head of the department

Department of Pediatrics and Pediatric Infectious Diseases

Галина Анатоліївна Білик, Bukovinian State Medical University 2 Theatre squ., Chernivtsi, Ukraine, 58002

Department of Pediatrics and Pediatric Infectious Diseases

References

Jeffery, P. K. (2004). Remodeling and Inflammation of Bronchi in Asthma and Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 1 (3), 176–183. doi: 10.1513/pats.200402-009ms

Brannan, J. D. (2010). Bronchial Hyperresponsiveness in the Assessment of Asthma Control. Chest, 138 (2), 11S–17S. doi: 10.1378/chest.10-0231

Busse, W. W. (2010). The Relationship of Airway Hyperresponsiveness and Airway Inflammation. Chest, 138 (2), 4S–10S. doi: 10.1378/chest.10-0100

Broide, D. H. (2008). Immunologic and inflammatory mechanisms that drive asthma progression to remodeling. Journal of Allergy and Clinical Immunology, 121 (3), 560–570. doi: 10.1016/j.jaci.2008.01.031

Pavord, I. D., Gibson, P. G. (2012). Inflammometry: the current state of play. Thorax, 67 (3), 191–192. doi: 10.1136/thoraxjnl-2012-201712

Umanets, T. R. (2010). Otsinka zapalnih zmin dihalnih shlyahiv u ditey iz bronhialnoyu astmoyu. Pediatriya, akusherstvo ta ginekologiya, 5, 32–35.

Brightling, C. E. (2006). Sputum Induction in Asthma. Chest, 129 (3), 503–504. doi: 10.1378/chest.129.3.503

Joubert, B. R., Reif, D. M., Edwards, S. W., Leiner, K. A., Hudgens, E. E., Egeghy, P. et. al (2011). Evaluation of genetic susceptibility to childhood allergy and asthma in an African American urban population. BMC Medical Genetics, 12 (1), 25. doi: 10.1186/1471-2350-12-25

Barnes, P. J., Dweik, R. A., Gelb, A. F., Gibson, P. G., George, S. C., Grasemann, H. et. al (2010). Exhaled Nitric Oxide in Pulmonary Diseases. Chest, 138 (3), 682–692. doi: 10.1378/chest.09-2090

Thakkinstian, A. (2005). Systematic Review and Meta-Analysis of the Association between 2-Adrenoceptor Polymorphisms and Asthma: A HuGE Review. American Journal of Epidemiology, 162 (3), 201–211. doi: 10.1093/aje/kwi184

Rebordosa, C., Kogevinas, M., Guerra, S., Castro-Giner, F., Jarvis, D., Cazzoletti, L. et. al (2011). ADRB2 Gly16Arg polymorphism, asthma control and lung function decline. European Respiratory Journal, 38 (5), 1029–1035. doi: 10.1183/09031936.00146310

Schroer, K. T., Gibson, A. M., Sivaprasad, U., Bass, S. A., Ericksen, M. B., Wills-Karp, M. et. al (2011). Downregulation of glutathione S-transferase pi in asthma contributes to enhanced oxidative stress. Journal of Allergy and Clinical Immunology, 128 (3), 539–548. doi: 10.1016/j.jaci.2011.04.018

Wu, W., Peden, D., Diaz-Sanchez, D. (2012). Role of GSTM1 in resistance to lung inflammation. Free Radical Biology and Medicine, 53 (4), 721–729. doi: 10.1016/j.freeradbiomed.2012.05.037

Koloskova, O. C., Bilous, T. M., Mikaluk, L. V. (2014). Indices of exhaled breath condensate in children with bronchial asthma under the deletion polymorphism of genes GSTT1 and GSTM1. European Journal of Medicine, 5 (3), 149–154. doi: 10.13187/ejm.2014.5.149

Kiyohara, C., Tanaka, K., Miyake, Y. (2008). Genetic Susceptibility to Atopic Dermatitis. Allergology International, 57 (1), 39–56. doi: 10.2332/allergolint.r-07-150

Kabesch, M., Michel, S., Tost, J. (2010). Epigenetic mechanisms and the relationship to childhood asthma. European Respiratory Journal, 36 (4), 950–961. doi: 10.1183/09031936.00019310

Piacentini, S., Polimanti, R., Simonelli, I., Donno, S., Pasqualetti, P., Manfellotto, D., Fuciarelli, M. (2013). Glutathione S-transferase polymorphisms, asthma susceptibility and confounding variables: a meta-analysis. Molecular Biology Reports, 40 (4), 3299–3313. doi: 10.1007/s11033-012-2405-2

Ferrara, N., Gerber, H.-P., LeCouter, J. (2003). The biology of VEGF and its receptors. Nature Medicine, 9 (6), 669–676. doi: 10.1038/nm0603-669

Silverman, M., Anderson, S. D. (1972). Standardization of Exercise Tests in Asthmatic Children. Archives of Disease in Childhood, 47 (256), 882–889. doi: 10.1136/adc.47.256.882

Boulet, L.-P., Boulet, V., Milot, J. (2002). How Should We Quantify Asthma Control? Chest, 122 (6), 2217–2223. doi: 10.1378/chest.122.6.2217

Vyidelenie DNK iz krovi. Prakticheskaya molekulyarnaya biologiya. Available at: http://molbiol.edu.ru

Sherratt, P. J., Hayes, J. D. (2002). Glutathione S-transferases. Enzyme Systems That Metabolise Drugs and Other Xenobiotics, 319–352. doi: 10.1002/0470846305.ch9

Green, M. R., Sambrook, J. (2012). Molecular cloning: A laboratory Manual (Fourth Edition). Cold Spring Harbor Laboratory Press, 2028.

Published

2016-01-30

Issue

Section

Medical