Наближений розв’язок задач теорії сушіння капілярно-пористих тіл складної форми
DOI :
https://doi.org/10.15587/2313-8416.2016.62663Mots-clés :
тепломасообмін, сушіння, метод R-функцій, капілярно-пористе тіло, харчова сировина, температура, вологовмістRésumé
Відмічено, що ефективність інтенсифікації процесів сушіння харчової сировини лежить на шляху дослідження математичних моделей з урахуванням широкого діапазону зміни теплофізичних параметрів та межових умов. Пропонується розвиток методу R-функцій сумісно з методом малого параметра стосовно до розв’язання задач тепло та масообміну. Отримано наближений розв’язок задачі про розподіл температури і вологовмісту в капілярно-пористому циліндричному тілі при межових умовах третього роду
Références
Kumar, A. V., Padmanabhan, S., Burla, R. (2008). Implicit boundary method for finite element analysis using non-conforming mesh or grid. International Journal for Numerical Methods in Engineering, 74 (9), 1421–1447. doi: 10.1002/nme.2216
Dem'janov, V. F., Tamasjan, G. Sh. (2010). O prjamyh metodah reshenija variacionnyh zadach. Trudy instituta matematiki i mehaniki UrO RAN, 16 (5), 36–47.
Trefethen, L. N. (2006). Numerical Analysis. Princeton Companion of Mathematics. Princeton University Press, 20.
Dey, T. K., Goswami, S. (2004). Provable surface reconstruction from noisy samples. Proceedings of the Twentieth Annual Symposium on Computational Geometry – SCG’04. doi: 10.1145/997817.997867
Rvachev, V. L. (1982). Teorija R-funkcij i nekotorye ee prilozhenija. Kiev: Nauk. dumka, 552.
Shapiro, V. (2007). Semi-analytic geometry with R-functions. Acta Numerica, 16, 239. doi: 10.1017/s096249290631001x
Lykov, A. V., Mihajlov, Ju. A. (1963). Teorija teplo- i massoperenosa. Moscow – Leningrad: Gosudarstvennoe jenergeticheskoe izdatel'stvo, 535.
Maksimenko-Shejko, K. V., Shejko, T. I. (2010). R-funkcii v matematicheskom modelirovanii geometricheskih ob’ektov v 3D po informacii v 2D. Vіsnik Zaporіz'kogo nacіonal'nogo unіversitetu, 1, 98–104.
Balabanian, N., Carlson, B. (2001). Digital logic design principles. John Wiley & Sons, Inc., 39–40.
Maksimenko-Shejko, K. V., Macevityj, A. M., Tolok, A. V., Shejko, T. I. (2007). R-funkcii i obratnaja zadacha analiticheskoj geometrii v trehmernom prostranstve. Informacionnye tehnologii, 10, 23–32.
Hernandez, M. A. (2001). Chebyshev's approximation algorithms and applications. Computers & Mathematics with Applications, 41 (3-4), 433–445. doi: 10.1016/s0898-1221(00)00286-8
Mihlin, S. G. (1970). Variacionnye metody v matematicheskoj fizike. Moscow: Nauka, 512.
Lobanova, L. S., Sinekop, N. S. (2001). Nestacionarnye dinamicheskie zadachi termouprugosti v dvuhmernyh oblastjah. Problemy mashinostroenija, 4 (1-2), 108.
Téléchargements
Publié-e
Numéro
Rubrique
Licence
(c) Tous droits réservés Микола Іванович Погожих, Микола Сергійович Синєкоп, Дмитро Олександрович Торяник, Андрій Олегович Пак 2016
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.