Сучасні методи аналізу якості вин
DOI:
https://doi.org/10.15587/2313-8416.2015.45118Słowa kluczowe:
методи аналізу вин, ферменти, біосенсори, етанол, гліцерол, лактат, глюкоза, аргінінAbstrakt
В огляді розглянуто літературні дані стосовно сучасних фізико-хімічних та ензиматичних методів кількісного визначення основних компонентів вин. Представлено результати власних досліджень по розробці ферментних та клітинних амперометричних сенсорів на етанол, лактат, глюкозу, аргінін та апробації їх на реальних зразках вин
Bibliografia
Wine Science, 3rd Edition. Principles and Applications (2008). Ed. Jackson & Jackson, Academic Press, 776.
Marsili, R. (Ed.) (2001). Flavor, Fragrance, and Odor Analysis. Second edition. CRC Press, 280. doi: 10.1201/9780203908273
Jackson, R. (2009).Wine Tasting. A Professional Handbook. Academic Press, 512.
Rebero-Gayon, J., Peyro, J. et al. (1979). Theory and practice of winemaking. Food industry. Мoscow, 2, 352.
Grossmann, M. It’s not all about adulteration. Modern Wine Analysis. Trace analysis of precious drops., 2–5. Available at: http://www.gerstel.com/pdf/GSW_Wine_Special_en.pdf
Goriushkina, T. B., Dziyadevych, S. V. (2008). Grape wines. Chemical composition and methods determination. Biotechnology, 1 (2), 24–38.
Speciality Wines (2011). Advances in Food and Nutrition Research, 63, 1–314.
Villamor, R. R., Evans, M. A. et al. (2013). Effects of ethanol, tannin and fructose on the headspace concentration and potential sensory significance of odorants in a model wine. Food Research International, 50 (1), 38–45.
Muñoz-González, C., Rodríguez-Bencomo, J. J., Moreno-Arribas, M. V., Pozo-Bayón, M. Á. (2011). Beyond the characterization of wine aroma compounds: looking for analytical approaches in trying to understand aroma perception during wine consumption. Anal Bioanal Chem, 401 (5), 1497–1512. doi: 10.1007/s00216-011-5078-0
Ferreira, S. L. C., Ferreira, H. S., de Jesus, R. M., Santos, J. V. S., Brandao, G. C., Souza, A. S. (2007). Development of method for the speciation of inorganic iron in wine samples. Analytica Chimica Acta, 602 (1), 89–93. doi: 10.1016/j.aca.2007.09.002
Mehuzl, N. A. (Ed.) (1993). Text-book. International methods of analyses and appreciation of wines and musts. Food industry, 38–61.
Espinoza, M., Olea-Azar, C., Speisky, H., Rodríguez, J. (2009). Determination of reactions between free radicals and selected Chilean wines and transition metals by ESR and UV–vis technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71 (5), 1638–1643. doi: 10.1016/j.saa.2008.06.015
Villano, D., Fernandezpachon, M., Troncoso, A., Garciaparrilla, M. (2006). Influence of enological practices on the antioxidant activity of wines. Food Chemistry, 95 (3), 394–404. doi: 10.1016/j.foodchem.2005.01.005
Argyri, K., Komaitis, M., Kapsokefalou, M. (2006). Iron decreases the antioxidant capacity of red wine under conditions of in vitro digestion. Food Chemistry, 96 (2), 281–289. doi: 10.1016/j.foodchem.2005.02.035
Kishkovskij, Z. N., Skurihin, I. M. (1988). Himija vina. Agropromizdat, 254.
Karadjova, I., Izgi, B., Gucer, S. (2002). Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 57 (3), 581–590. doi: 10.1016/s0584-8547(01)00386-x
Ajtony, Z., Szoboszlai, N., Suskó, E. K., Mezei, P., György, K., Bencs, L. (2008). Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta, 76 (3), 627–634. doi: 10.1016/j.talanta.2008.04.014
Franc, C., David, F., de Revel, G. (2009). Multi-residue off-flavour profiling in wine using stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography A, 1216 (15), 3318–3327. doi: 10.1016/j.chroma.2009.01.103
Ragazzo-Sanchez, J. A., Chalier, P. et al. (2008). Identification of different alcoholic beverages by electronic nose coupled to GC. Sensors and Actuators B: Chemical, 134 (1), 43–48.
Restani, P., Uberti, F., Tarantino, C., Ballabio, C., Gombac, F., Bastiani, E. (2011). Validation by a Collaborative Interlaboratory Study of an ELISA Method for the Detection of Caseinate Used as a Fining Agent in Wine. Food Analytical Methods, 5 (3), 480–486. doi: 10.1007/s12161-011-9270-9
Pan, X.-D., Tang, J., Chen, Q., Wu, P.-G., Han, J.-L. (2013). Evaluation of direct sampling method for trace elements analysis in Chinese rice wine by ICP–OES. European Food Research and Technology, 236 (3), 531–535. doi: 10.1007/s00217-012-1888-3
Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20 (7), 618–626. doi: 10.1016/j.jfca.2007.03.002
Uthurry, C. A., Lepe, J. A. S., Lombardero, J., García Del Hierro, J. R. (2006). Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chemistry, 94 (2), 262–270. doi: 10.1016/j.foodchem.2004.11.017
Mira de Orduña, R. (2000). Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiology Letters, 183 (1), 31–35. doi: 10.1016/s0378-1097(99)00624-2
Jiao, Z., Dong, Y., Chen, Q. (2014). Ethyl Carbamate in Fermented Beverages: Presence, Analytical Chemistry, Formation Mechanism, and Mitigation Proposals. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 611–626. doi: 10.1111/1541-4337.12084
Jones, P. R., Gawel, R., Francis, I. L., Waters, E. J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Quality and Preference, 19 (6), 596–607. doi: 10.1016/j.foodqual.2008.03.005
Brainina, K. (2004). Determination of heavy metals in wines by anodic stripping voltammetry with thick-film modified electrode. Analytica Chimica Acta, 514 (2), 227–234. doi: 10.1016/s0003-2670(04)00372-1
Catarino, S., Curvelo-Garcia, A. S., Sousa, R. B. de. (2006). Measurements of contaminant elements of wines by inductively coupled plasma-mass spectrometry: A comparison of two calibration approaches. Talanta, 70 (5), 1073–1080. doi: 10.1016/j.talanta.2006.02.022
Spayd, S. E., Wample, R. L. et al. (1994). Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic., 45, 34–42.
Huang, Z., Ough, C. S. (1989). Effect of vineyard locations, varieties and rootstocks on the juice amino acid composition of several cultivars. Ibid., 40, 135–139.
Ough, C. S., Stevens, D., Almy, J. (1989). Preliminary comments on effects of grape vineyard nitrogen fertilization on the subsequent ethyl carbamate formation in wines. Am. J. Enol. Vitic., 40, 219–220.
Kaplan, N. O., Ciotti, M. M. (1957). Enzymatic determination of ethanol. Methods in Enzymology, 3, 253–255. doi: 10.1016/s0076-6879(57)03385-6
Shleev, S. V., Shumakovich, G. P., Nikitina, O. V., Morozova, O. V., Pavlishko, H. M., Gayda, G. Z., Gonchar, M. V. (2006). Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochemistry (Moscow), 71 (3), 245–250. doi: 10.1134/s0006297906030035
Pavlishko, G. M., Gajda, G. Z., Gonchar, M. V. (2004). Alkogol'oksydaza ta i'i' bioanalitychne vykorystannja. Visnyk L'viv. Un-tu. Biol. Serija, 35, 3–22.
Gonchar, M. V. (1999). Tradicionnye i fermentativnye metody opredelenija alkogolja v biologicheskih gidkostjah. Lab. diagnostika, 1, 45–49.
Gonchar, M. V. (1998). Chutlivij metod kіl'kіsnogo viznachennja peroksidu vodnju ta substratіv oksidaz u bіologіchnih ob’ektah. Ukr. bіohіm. zhurn., 70 (5), 157–163.
Pavlishko, N. M., Ryabinina, O. V., Zhilyakova, T. A., Sakharov, I. Y., Gerzhikova, V. G., Gonchar, M. V. (2005). Oxidase-Peroxidase Method of Ethanol Assay in Fermented Musts and Wine Products. Appl Biochem Microbiol, 41 (6), 604–609. doi: 10.1007/s10438-005-0110-9
Kiba, N., Azuma, N., Furusawa, M. (1996). Chemiluminometric method for the determination of glycerol in wine by flow-injection analysis with co-immobilized glycerol dehydrogenase/NADH oxidase. Talanta, 43 (10), 1761–1766. doi: 10.1016/0039-9140(96)01969-8
Segundo, M. A., Rangel, A. O. S. (2002). Sequential injection flow system with improved sample throughput: determination of glycerol and ethanol in wines. Analytica Chimica Acta, 458 (1), 131–138. doi: 10.1016/s0003-2670(01)01525-2
Mataix, E. (2000). Simultaneous determination of ethanol and glycerol in wines by a flow injection-pervaporation approach with in parallel photometric and fluorimetric detection. Talanta, 51 (3), 489–496. doi: 10.1016/s0039-9140(99)00297-0
Rangel, A. O. S. S., Tóth, I. V. (2000). Enzymatic determination of ethanol and glycerol by flow injection parallel multi-site detection. Analytica Chimica Acta, 416 (2), 205–210. doi: 10.1016/s0003-2670(00)00905-3
Global Market Study on Biosensor: Asia-Pacific to Witness Highest Growth by 2020. Available at: http://www.persistencemarketresearch.com/market-research/biosensor-market.asp
Smutok, O., Gayda, G. et al.; Serra, P. A. (Ed.) (2011). Amperometric Biosensors for Lactate, Alcohols, and Glycerol Assays in Clinical Diagnostics. Chapter 20 in the Book “Biosensors - Emerging Materials and Applications”. INTECH. 401–446. doi: 10.5772/16643
Luca, G. C., Reis, B. F., Zagatto, E. A., Montenegro, M. C. B. S., Araújo, A. N., Lima, J. L. F. (1998). Development of a potentiometric procedure for determination of glycerol and 2,3-butanediol in wine by sequential injection analysis. Analytica Chimica Acta, 366 (1-3), 193–199. doi: 10.1016/s0003-2670(98)00103-2
Monošík, R., Ukropcová, D., Streďanský, M., Šturdík, E. (2012). Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine. Analytical Biochemistry, 421 (1), 256–261. doi: 10.1016/j.ab.2011.10.020
Goriushkina, T. B., Soldatkin, A. P., Dzyadevych, S. V. (2009). Application of Amperometric Biosensors for Analysis of Ethanol, Glucose, and Lactate in Wine. Journal of Agricultural and Food Chemistry, 57 (15), 6528–6535. doi: 10.1021/jf9009087
Gamella, M., Campuzano, S., Reviejo, A. J., Pingarrón, J. M. (2008). Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines. Analytica Chimica Acta, 609 (2), 201–209. doi: 10.1016/j.aca.2007.12.036
Li, B., Lan, D., Zhang, Z. (2008). Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Analytical Biochemistry, 374 (1), 64–70. doi: 10.1016/j.ab.2007.10.036
Haghighi, B., Hamidi, H., Gorton, L. (2010). Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors and Actuators B: Chemical, 147 (1), 270–276. doi: 10.1016/j.snb.2010.03.020
Gajda, G. Z., Stasjuk, N. Je., Gonchar, M. V. (2014) Metody analizu L-argininu. Biotechnologia Acta, 7 (1), 31–39.
Stasyuk, N. E., Gaida, G. Z., Gonchar, M. V. (2013). L-arginine assay with the use of arginase I. Appl Biochem Microbiol, 49 (5), 529–534. doi: 10.1134/s000368381305013x
Stasyuk, N. Ye., Gayda, G. Z., Gonchar, M. V. (2014). L-arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors & Actuators B. (Chemical), 204, 515–521. doi: 10.1016/j.snb.2014.06.112
Smutok, O., Ngounou, B. et al. (2006). A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an Os-complex modified electrodeposition paint. Sensors Actuators B: Chem., 113 (2), 590–598.
Stasyuk, N. Y., Gayda, G. Z., Gonchar, M. V. (2014). l-Arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors and Actuators B: Chemical, 204, 515–521. doi: 10.1016/j.snb.2014.06.112
Stasyuk, N., Smutok, O., Gayda, G., Vus, B., Koval’chuk, Y., Gonchar, M. (2012). Bi-enzyme l-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosensors and Bioelectronics, 37 (1), 46–52. doi: 10.1016/j.bios.2012.04.031
##submission.downloads##
Opublikowane
Numer
Dział
Licencja
Copyright (c) 2015 Галина Зуфарівна Гайда, Галина Миколаївна Клепач, Марія Миколаївна Синенька, Наталія Євгенівна Стасюк, Михайло Васильович Гончар
Utwór dostępny jest na licencji Creative Commons Uznanie autorstwa 4.0 Międzynarodowe.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.