Сучасні методи аналізу якості вин

Автор(и)

  • Галина Зуфарівна Гайда Інститут біології клітини НАН України вул. Драгоманова, 14/16, Львів, Україна, 79005, Україна https://orcid.org/0000-0003-4015-8083
  • Галина Миколаївна Клепач Дрогобицький державний педагогічний університет, вул. Т.Шевченка, 23, м. Дрогобич, Львівська обл., Україна, 82100, Україна
  • Марія Миколаївна Синенька Інститут біології клітини НАН України вул. Драгоманова, 14/16, м. Львів, Україна, 79005, Україна
  • Наталія Євгенівна Стасюк Інститут біології клітини НАН України вул. Драгоманова 14/16, м. Львів, Україна, 79005, Україна
  • Михайло Васильович Гончар Інститут біології клітини НАН України, вул. Драгоманова, 14/16, м. Львів, Україна, 79005, Україна

DOI:

https://doi.org/10.15587/2313-8416.2015.45118

Ключові слова:

методи аналізу вин, ферменти, біосенсори, етанол, гліцерол, лактат, глюкоза, аргінін

Анотація

В огляді розглянуто літературні дані стосовно сучасних фізико-хімічних та ензиматичних методів кількісного визначення основних компонентів вин. Представлено результати власних досліджень по розробці ферментних та клітинних амперометричних сенсорів на етанол, лактат, глюкозу, аргінін та апробації їх на реальних зразках вин

Біографії авторів

Галина Зуфарівна Гайда, Інститут біології клітини НАН України вул. Драгоманова, 14/16, Львів, Україна, 79005

Кандидат хімічних наук, старший науковий співробітник

Відділ аналітичної біотехнології, старший науковий співробітник

Галина Миколаївна Клепач, Дрогобицький державний педагогічний університет, вул. Т.Шевченка, 23, м. Дрогобич, Львівська обл., Україна, 82100

Кандидат біологічних наук, доцент

Біологічний факультет

Марія Миколаївна Синенька, Інститут біології клітини НАН України вул. Драгоманова, 14/16, м. Львів, Україна, 79005

Відділ аналітичної біотехнології, iнженер

Наталія Євгенівна Стасюк, Інститут біології клітини НАН України вул. Драгоманова 14/16, м. Львів, Україна, 79005

Кандидат хімічних наук

Відділ Аналітичної біотехнології, молодший науковий співробітник

Михайло Васильович Гончар, Інститут біології клітини НАН України, вул. Драгоманова, 14/16, м. Львів, Україна, 79005

доктор біологічних наук, професор

завідувач відділу Аналітичної біотехнології 

Посилання

Wine Science, 3rd Edition. Principles and Applications (2008). Ed. Jackson & Jackson, Academic Press, 776.

Marsili, R. (Ed.) (2001). Flavor, Fragrance, and Odor Analysis. Second edition. CRC Press, 280. doi: 10.1201/9780203908273

Jackson, R. (2009).Wine Tasting. A Professional Handbook. Academic Press, 512.

Rebero-Gayon, J., Peyro, J. et al. (1979). Theory and practice of winemaking. Food industry. Мoscow, 2, 352.

Grossmann, M. It’s not all about adulteration. Modern Wine Analysis. Trace analysis of precious drops., 2–5. Available at: http://www.gerstel.com/pdf/GSW_Wine_Special_en.pdf

Goriushkina, T. B., Dziyadevych, S. V. (2008). Grape wines. Chemical composition and methods determination. Biotechnology, 1 (2), 24–38.

Speciality Wines (2011). Advances in Food and Nutrition Research, 63, 1–314.

Villamor, R. R., Evans, M. A. et al. (2013). Effects of ethanol, tannin and fructose on the headspace concentration and potential sensory significance of odorants in a model wine. Food Research International, 50 (1), 38–45.

Muñoz-González, C., Rodríguez-Bencomo, J. J., Moreno-Arribas, M. V., Pozo-Bayón, M. Á. (2011). Beyond the characterization of wine aroma compounds: looking for analytical approaches in trying to understand aroma perception during wine consumption. Anal Bioanal Chem, 401 (5), 1497–1512. doi: 10.1007/s00216-011-5078-0

Ferreira, S. L. C., Ferreira, H. S., de Jesus, R. M., Santos, J. V. S., Brandao, G. C., Souza, A. S. (2007). Development of method for the speciation of inorganic iron in wine samples. Analytica Chimica Acta, 602 (1), 89–93. doi: 10.1016/j.aca.2007.09.002

Mehuzl, N. A. (Ed.) (1993). Text-book. International methods of analyses and appreciation of wines and musts. Food industry, 38–61.

Espinoza, M., Olea-Azar, C., Speisky, H., Rodríguez, J. (2009). Determination of reactions between free radicals and selected Chilean wines and transition metals by ESR and UV–vis technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71 (5), 1638–1643. doi: 10.1016/j.saa.2008.06.015

Villano, D., Fernandezpachon, M., Troncoso, A., Garciaparrilla, M. (2006). Influence of enological practices on the antioxidant activity of wines. Food Chemistry, 95 (3), 394–404. doi: 10.1016/j.foodchem.2005.01.005

Argyri, K., Komaitis, M., Kapsokefalou, M. (2006). Iron decreases the antioxidant capacity of red wine under conditions of in vitro digestion. Food Chemistry, 96 (2), 281–289. doi: 10.1016/j.foodchem.2005.02.035

Kishkovskij, Z. N., Skurihin, I. M. (1988). Himija vina. Agropromizdat, 254.

Karadjova, I., Izgi, B., Gucer, S. (2002). Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 57 (3), 581–590. doi: 10.1016/s0584-8547(01)00386-x

Ajtony, Z., Szoboszlai, N., Suskó, E. K., Mezei, P., György, K., Bencs, L. (2008). Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta, 76 (3), 627–634. doi: 10.1016/j.talanta.2008.04.014

Franc, C., David, F., de Revel, G. (2009). Multi-residue off-flavour profiling in wine using stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography A, 1216 (15), 3318–3327. doi: 10.1016/j.chroma.2009.01.103

Ragazzo-Sanchez, J. A., Chalier, P. et al. (2008). Identification of different alcoholic beverages by electronic nose coupled to GC. Sensors and Actuators B: Chemical, 134 (1), 43–48.

Restani, P., Uberti, F., Tarantino, C., Ballabio, C., Gombac, F., Bastiani, E. (2011). Validation by a Collaborative Interlaboratory Study of an ELISA Method for the Detection of Caseinate Used as a Fining Agent in Wine. Food Analytical Methods, 5 (3), 480–486. doi: 10.1007/s12161-011-9270-9

Pan, X.-D., Tang, J., Chen, Q., Wu, P.-G., Han, J.-L. (2013). Evaluation of direct sampling method for trace elements analysis in Chinese rice wine by ICP–OES. European Food Research and Technology, 236 (3), 531–535. doi: 10.1007/s00217-012-1888-3

Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20 (7), 618–626. doi: 10.1016/j.jfca.2007.03.002

Uthurry, C. A., Lepe, J. A. S., Lombardero, J., García Del Hierro, J. R. (2006). Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chemistry, 94 (2), 262–270. doi: 10.1016/j.foodchem.2004.11.017

Mira de Orduña, R. (2000). Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiology Letters, 183 (1), 31–35. doi: 10.1016/s0378-1097(99)00624-2

Jiao, Z., Dong, Y., Chen, Q. (2014). Ethyl Carbamate in Fermented Beverages: Presence, Analytical Chemistry, Formation Mechanism, and Mitigation Proposals. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 611–626. doi: 10.1111/1541-4337.12084

Jones, P. R., Gawel, R., Francis, I. L., Waters, E. J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Quality and Preference, 19 (6), 596–607. doi: 10.1016/j.foodqual.2008.03.005

Brainina, K. (2004). Determination of heavy metals in wines by anodic stripping voltammetry with thick-film modified electrode. Analytica Chimica Acta, 514 (2), 227–234. doi: 10.1016/s0003-2670(04)00372-1

Catarino, S., Curvelo-Garcia, A. S., Sousa, R. B. de. (2006). Measurements of contaminant elements of wines by inductively coupled plasma-mass spectrometry: A comparison of two calibration approaches. Talanta, 70 (5), 1073–1080. doi: 10.1016/j.talanta.2006.02.022

Spayd, S. E., Wample, R. L. et al. (1994). Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic., 45, 34–42.

Huang, Z., Ough, C. S. (1989). Effect of vineyard locations, varieties and rootstocks on the juice amino acid composition of several cultivars. Ibid., 40, 135–139.

Ough, C. S., Stevens, D., Almy, J. (1989). Preliminary comments on effects of grape vineyard nitrogen fertilization on the subsequent ethyl carbamate formation in wines. Am. J. Enol. Vitic., 40, 219–220.

Kaplan, N. O., Ciotti, M. M. (1957). Enzymatic determination of ethanol. Methods in Enzymology, 3, 253–255. doi: 10.1016/s0076-6879(57)03385-6

Shleev, S. V., Shumakovich, G. P., Nikitina, O. V., Morozova, O. V., Pavlishko, H. M., Gayda, G. Z., Gonchar, M. V. (2006). Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochemistry (Moscow), 71 (3), 245–250. doi: 10.1134/s0006297906030035

Pavlishko, G. M., Gajda, G. Z., Gonchar, M. V. (2004). Alkogol'oksydaza ta i'i' bioanalitychne vykorystannja. Visnyk L'viv. Un-tu. Biol. Serija, 35, 3–22.

Gonchar, M. V. (1999). Tradicionnye i fermentativnye metody opredelenija alkogolja v biologicheskih gidkostjah. Lab. diagnostika, 1, 45–49.

Gonchar, M. V. (1998). Chutlivij metod kіl'kіsnogo viznachennja peroksidu vodnju ta substratіv oksidaz u bіologіchnih ob’ektah. Ukr. bіohіm. zhurn., 70 (5), 157–163.

Pavlishko, N. M., Ryabinina, O. V., Zhilyakova, T. A., Sakharov, I. Y., Gerzhikova, V. G., Gonchar, M. V. (2005). Oxidase-Peroxidase Method of Ethanol Assay in Fermented Musts and Wine Products. Appl Biochem Microbiol, 41 (6), 604–609. doi: 10.1007/s10438-005-0110-9

Kiba, N., Azuma, N., Furusawa, M. (1996). Chemiluminometric method for the determination of glycerol in wine by flow-injection analysis with co-immobilized glycerol dehydrogenase/NADH oxidase. Talanta, 43 (10), 1761–1766. doi: 10.1016/0039-9140(96)01969-8

Segundo, M. A., Rangel, A. O. S. (2002). Sequential injection flow system with improved sample throughput: determination of glycerol and ethanol in wines. Analytica Chimica Acta, 458 (1), 131–138. doi: 10.1016/s0003-2670(01)01525-2

Mataix, E. (2000). Simultaneous determination of ethanol and glycerol in wines by a flow injection-pervaporation approach with in parallel photometric and fluorimetric detection. Talanta, 51 (3), 489–496. doi: 10.1016/s0039-9140(99)00297-0

Rangel, A. O. S. S., Tóth, I. V. (2000). Enzymatic determination of ethanol and glycerol by flow injection parallel multi-site detection. Analytica Chimica Acta, 416 (2), 205–210. doi: 10.1016/s0003-2670(00)00905-3

Global Market Study on Biosensor: Asia-Pacific to Witness Highest Growth by 2020. Available at: http://www.persistencemarketresearch.com/market-research/biosensor-market.asp

Smutok, O., Gayda, G. et al.; Serra, P. A. (Ed.) (2011). Amperometric Biosensors for Lactate, Alcohols, and Glycerol Assays in Clinical Diagnostics. Chapter 20 in the Book “Biosensors - Emerging Materials and Applications”. INTECH. 401–446. doi: 10.5772/16643

Luca, G. C., Reis, B. F., Zagatto, E. A., Montenegro, M. C. B. S., Araújo, A. N., Lima, J. L. F. (1998). Development of a potentiometric procedure for determination of glycerol and 2,3-butanediol in wine by sequential injection analysis. Analytica Chimica Acta, 366 (1-3), 193–199. doi: 10.1016/s0003-2670(98)00103-2

Monošík, R., Ukropcová, D., Streďanský, M., Šturdík, E. (2012). Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine. Analytical Biochemistry, 421 (1), 256–261. doi: 10.1016/j.ab.2011.10.020

Goriushkina, T. B., Soldatkin, A. P., Dzyadevych, S. V. (2009). Application of Amperometric Biosensors for Analysis of Ethanol, Glucose, and Lactate in Wine. Journal of Agricultural and Food Chemistry, 57 (15), 6528–6535. doi: 10.1021/jf9009087

Gamella, M., Campuzano, S., Reviejo, A. J., Pingarrón, J. M. (2008). Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines. Analytica Chimica Acta, 609 (2), 201–209. doi: 10.1016/j.aca.2007.12.036

Li, B., Lan, D., Zhang, Z. (2008). Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Analytical Biochemistry, 374 (1), 64–70. doi: 10.1016/j.ab.2007.10.036

Haghighi, B., Hamidi, H., Gorton, L. (2010). Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors and Actuators B: Chemical, 147 (1), 270–276. doi: 10.1016/j.snb.2010.03.020

Gajda, G. Z., Stasjuk, N. Je., Gonchar, M. V. (2014) Metody analizu L-argininu. Biotechnologia Acta, 7 (1), 31–39.

Stasyuk, N. E., Gaida, G. Z., Gonchar, M. V. (2013). L-arginine assay with the use of arginase I. Appl Biochem Microbiol, 49 (5), 529–534. doi: 10.1134/s000368381305013x

Stasyuk, N. Ye., Gayda, G. Z., Gonchar, M. V. (2014). L-arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors & Actuators B. (Chemical), 204, 515–521. doi: 10.1016/j.snb.2014.06.112

Smutok, O., Ngounou, B. et al. (2006). A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an Os-complex modified electrodeposition paint. Sensors Actuators B: Chem., 113 (2), 590–598.

Stasyuk, N. Y., Gayda, G. Z., Gonchar, M. V. (2014). l-Arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors and Actuators B: Chemical, 204, 515–521. doi: 10.1016/j.snb.2014.06.112

Stasyuk, N., Smutok, O., Gayda, G., Vus, B., Koval’chuk, Y., Gonchar, M. (2012). Bi-enzyme l-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosensors and Bioelectronics, 37 (1), 46–52. doi: 10.1016/j.bios.2012.04.031

##submission.downloads##

Опубліковано

2015-06-25

Номер

Розділ

Біологічні науки