Оптимизация процесса флокуляции очисктки промышленных сточных вод
DOI:
https://doi.org/10.15587/2313-8416.2019.189708Ключевые слова:
флокуляция, агрегатообразование, прочность агрегатов, скорость осаждения, оптимизация, гидромеханическое разрушение флокулАннотация
Исследовано влияние концентрации твердой фазы и расхода флокулянта на изменение скорости оседания твердой фазы и прочность флокул. Предложена методика оптимизации параметров агрегатообразования и повышения прочности флокул после гидромеханических воздействий, учитывающая концентрацию твердой фазы и расход флокулянта. Было установлено, что оптимальные условия агрегатообразования возможно обеспечить путем минимизации гидромеханических воздействий на флокулы, а так же создания наилучших условий флокулообразования. Среди путей оптимизации процесса анализировались способы влияния на эти факторы за счет технологических особенностей введения процесса, таких как корректировка концентрации, скорость транспортировки сфлокулированного шлама, время перемешивания
Библиографические ссылки
Walsh, M. E., Zhao, N., Gora, S. L., Gagnon, G. A. (2009). Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process. Environmental Technology, 30 (9), 927–938. doi: http://doi.org/10.1080/09593330902971287
Nandy, T., Shastry, S., Pathe, P. P., Kaul, S. N. (2003). Pre-treatment of currency printing ink wastewater through coagulation-flocculation process. Water, Air, and Soil Pollution, 148 (1/4), 15–30. doi: http://doi.org/10.1023/a:1025454003863
Laue, C., Hunkeler, D. (2006). Chitosan-graft-acrylamide polyelectrolytes: Synthesis, flocculation, and modeling. Journal of Applied Polymer Science, 102 (1), 885–896. doi: http://doi.org/10.1002/app.24188
Gurse, A., Yalcin, M., Dogar, C. (2003). Removal of Remazol Red RB by using Al(III) as coagulant-flocculant: effect of some variables on settling velocity. Water, Air, and Soil Pollution, 146 (1/4), 297–318. doi: http://doi.org/10.1023/a:1023994822359
Shkop, A., Tseitlin, M., Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 35–40. doi: http://doi.org/10.15587/1729-4061.2016.86085
Shkop, A., Tseitlin, M., Shestopalov, O., Raiko, V. (2017). Study of the strength of flocculated structures of polydispersed coal suspensions. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 20–26. doi: http://doi.org/10.15587/1729-4061.2017.91031
Wang, Y., Chen, K., Mo, L., Li, J., Xu, J. (2014). Optimization of coagulation–flocculation process for papermaking-reconstituted tobacco slice wastewater treatment using response surface methodology. Journal of Industrial and Engineering Chemistry, 20 (2), 391–396. doi: http://doi.org/10.1016/j.jiec.2013.04.033
Bridgeman, J., Jefferson, B., Parsons, S. A. (2009). Computational Fluid Dynamics Modelling of Flocculation in Water Treatment: A Review. Engineering Applications of Computational Fluid Mechanics, 3 (2), 220–241. doi: http://doi.org/10.1080/19942060.2009.11015267
Bache, D. H. (2004). Floc rupture and turbulence: a framework for analysis. Chemical Engineering Science, 59 (12), 2521–2534. doi: http://doi.org/10.1016/j.ces.2004.01.055
Hogg, R.; Dobias, B., Stechemesser, H. (Eds.) (2005). Flocculation and dewatering of fine-particle suspension. Coagulation and flocculation. Boca Raton: CRC Press, 805–850. doi: http://doi.org/10.1201/9781420027686.ch12
Shestopalov, O., Briankin, O., Tseitlin, M., Raiko, V., Hetta, O. (2019). Studying patterns in the flocculation of sludges from wet gas treatment in metallurgical production. Eastern-European Journal of Enterprise Technologies, 5 (10 (101)), 6–13. doi: http://doi.org/10.15587/1729-4061.2019.181300
Trinh, T. K., Kang, L. S. (2011). Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chemical Engineering Research and Design, 89 (7), 1126–1135. doi: http://doi.org/10.1016/j.cherd.2010.12.004
Shestopalov, O., Rykusova, N., Hetta, O., Ananieva, V., Chynchyk, O. (2019). Revealing patterns in the aggregation and deposition kinetics of the solid phase in drilling wastewater. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 50–58. doi: http://doi.org/10.15587/1729-4061.2019.157242
Загрузки
Опубликован
Выпуск
Раздел
Лицензия
Copyright (c) 2019 Oleksіi Shestopalov , Oleksandr Briankin, Nadegda Rykusova, Oksana Hetta
Это произведение доступно по лицензии Creative Commons «Attribution» («Атрибуция») 4.0 Всемирная.
Наше издание использует положения об авторских правах Creative Commons CC BY для журналов открытого доступа.
Авторы, которые публикуются в этом журнале, соглашаются со следующими условиями:
1. Авторы оставляют за собой право на авторство своей работы и передают журналу право первой публикации этой работы на условиях лицензии Creative Commons CC BY, которая позволяет другим лицам свободно распространять опубликованную работу с обязательной ссылкой на авторов оригинальной работы и первую публикацию работы в этом журнале.
2. Авторы имеют право заключать самостоятельные дополнительные соглашения, которые касаются неэксклюзивного распространения работы в том виде, в котором она была опубликована этим журналом (например, размещать работу в электронном хранилище учреждения или публиковать в составе монографии), при условии сохранения ссылки на первую публикацию работы в этом журнале .