Оптимізація процесу флокуляції очищення промислових стічних вод
DOI:
https://doi.org/10.15587/2313-8416.2019.189708Ключові слова:
флокуляція, агрегатоутворення, міцність агрегатів, швидкість осадження, оптимізація, гідромеханічне руйнування флокулАнотація
Досліджено вплив концентрації твердої фази та витрати флокулянту на зміну швидкості осідання твердої фази і міцність флокул. Запропонована методика оптимізації параметрів агрегатоутворення та підвищення міцності флокул після гідромеханічного впливу, що враховує концентрацію твердої фази і витрату флокулянту. Було встановлено, що оптимальні умови агрегатоутворення можливо забезпечити шляхом мінімізації гідромеханічного впливу на флокули, а також створення якнайкращих умов утворення флокул. Серед шляхів оптимізації процесу аналізувалися способи впливу на ці чинники за рахунок технологічних особливостей введення процесу, таких як коректування концентрації, швидкість транспортування сфлокульованого шламу, час перемішування
Посилання
Walsh, M. E., Zhao, N., Gora, S. L., Gagnon, G. A. (2009). Effect of coagulation and flocculation conditions on water quality in an immersed ultrafiltration process. Environmental Technology, 30 (9), 927–938. doi: http://doi.org/10.1080/09593330902971287
Nandy, T., Shastry, S., Pathe, P. P., Kaul, S. N. (2003). Pre-treatment of currency printing ink wastewater through coagulation-flocculation process. Water, Air, and Soil Pollution, 148 (1/4), 15–30. doi: http://doi.org/10.1023/a:1025454003863
Laue, C., Hunkeler, D. (2006). Chitosan-graft-acrylamide polyelectrolytes: Synthesis, flocculation, and modeling. Journal of Applied Polymer Science, 102 (1), 885–896. doi: http://doi.org/10.1002/app.24188
Gurse, A., Yalcin, M., Dogar, C. (2003). Removal of Remazol Red RB by using Al(III) as coagulant-flocculant: effect of some variables on settling velocity. Water, Air, and Soil Pollution, 146 (1/4), 297–318. doi: http://doi.org/10.1023/a:1023994822359
Shkop, A., Tseitlin, M., Shestopalov, O. (2016). Exploring the ways to intensify the dewatering process of polydisperse suspensions. Eastern-European Journal of Enterprise Technologies, 6 (10 (84)), 35–40. doi: http://doi.org/10.15587/1729-4061.2016.86085
Shkop, A., Tseitlin, M., Shestopalov, O., Raiko, V. (2017). Study of the strength of flocculated structures of polydispersed coal suspensions. Eastern-European Journal of Enterprise Technologies, 1 (10 (85)), 20–26. doi: http://doi.org/10.15587/1729-4061.2017.91031
Wang, Y., Chen, K., Mo, L., Li, J., Xu, J. (2014). Optimization of coagulation–flocculation process for papermaking-reconstituted tobacco slice wastewater treatment using response surface methodology. Journal of Industrial and Engineering Chemistry, 20 (2), 391–396. doi: http://doi.org/10.1016/j.jiec.2013.04.033
Bridgeman, J., Jefferson, B., Parsons, S. A. (2009). Computational Fluid Dynamics Modelling of Flocculation in Water Treatment: A Review. Engineering Applications of Computational Fluid Mechanics, 3 (2), 220–241. doi: http://doi.org/10.1080/19942060.2009.11015267
Bache, D. H. (2004). Floc rupture and turbulence: a framework for analysis. Chemical Engineering Science, 59 (12), 2521–2534. doi: http://doi.org/10.1016/j.ces.2004.01.055
Hogg, R.; Dobias, B., Stechemesser, H. (Eds.) (2005). Flocculation and dewatering of fine-particle suspension. Coagulation and flocculation. Boca Raton: CRC Press, 805–850. doi: http://doi.org/10.1201/9781420027686.ch12
Shestopalov, O., Briankin, O., Tseitlin, M., Raiko, V., Hetta, O. (2019). Studying patterns in the flocculation of sludges from wet gas treatment in metallurgical production. Eastern-European Journal of Enterprise Technologies, 5 (10 (101)), 6–13. doi: http://doi.org/10.15587/1729-4061.2019.181300
Trinh, T. K., Kang, L. S. (2011). Response surface methodological approach to optimize the coagulation–flocculation process in drinking water treatment. Chemical Engineering Research and Design, 89 (7), 1126–1135. doi: http://doi.org/10.1016/j.cherd.2010.12.004
Shestopalov, O., Rykusova, N., Hetta, O., Ananieva, V., Chynchyk, O. (2019). Revealing patterns in the aggregation and deposition kinetics of the solid phase in drilling wastewater. Eastern-European Journal of Enterprise Technologies, 1 (10 (97)), 50–58. doi: http://doi.org/10.15587/1729-4061.2019.157242
##submission.downloads##
Опубліковано
Номер
Розділ
Ліцензія
Авторське право (c) 2019 Oleksіi Shestopalov , Oleksandr Briankin, Nadegda Rykusova, Oksana Hetta
![Creative Commons License](http://i.creativecommons.org/l/by/4.0/88x31.png)
Ця робота ліцензується відповідно до Creative Commons Attribution 4.0 International License.
Наше видання використовує положення про авторські права Creative Commons CC BY для журналів відкритого доступу.
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:
1. Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons CC BY, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
2. Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.