Using the method of ideal point to solve dual-objective problem for production scheduling

Авторы

  • Mariia Marko Львовский национальный университет имени И. Франка ул. Университетская, 1, г. Львов, Украина, 79000, Ukraine https://orcid.org/0000-0002-7795-7121

DOI:

https://doi.org/10.15587/2313-8416.2016.74350

Ключевые слова:

method of ideal point, dual-objective problem, scalarized problem, simplex process, Lagrange method of multipliers

Аннотация

In practice, there are often problems, which must simultaneously optimize several criterias. This so-called multi-objective optimization problem. In the article we consider the use of the method ideal point to solve the two-objective optimization problem of production planning. The process of finding solution to the problem consists of a series of steps where using simplex method, we find the ideal point. After that for solving a scalar problems, we use the method of Lagrange multipliers

Биография автора

Mariia Marko, Львовский национальный университет имени И. Франка ул. Университетская, 1, г. Львов, Украина, 79000

Соискатель

Кафедра математического моделирования социально-экономических процессов

Библиографические ссылки

Voloshyn, O. F., Mashchenko, S. D. (2010). Models and methods of decision-making. Kyiv, 336.

Larichev, O. I. (2000). Theory and Methods of decision-making. Moscow.

Tsehelyk, H. H. (2016). Models and methods of decision-making support under the circumstances of certainty. Lviv.

Tsehelyk, H. H. (2011). Mathematical Programming. Lviv: Ivan Franko National University, 337.

Bartish, M. Y. (2006). Methods of Optimization. Theory and Algorithms. Lviv: Ivan Franko National University, 225.

Bartsekas, D. (1987). Conditional Optimization and Lagrange Methods of Multipliers. Moscow, 400.

Kigelia, V. R. (2003). Mathematical methods of market economy. Kyiv: Condor, 158.

Dobulyak, L. P., Tsehelyk, G. (2012). Using multi-optimization models in the management of small businesses. Bulletin LSAF. Economic science, 22, 269–275.

Kochovych, E. (1994). Financial mathematics: Theory and practice fіnansovo-bank settlements. Мoscow: Finance and Statistics, 271.

Samarki, A. L., Mikhailov, F. P. (1997). Mathematical modeling. Moscow: Science.

Загрузки

Опубликован

2016-07-30

Выпуск

Раздел

Экономические науки