Наноэлектроника «снизу – вверх»: начала спинтроники и магнетроники

Автор(и)

  • Юрій Олексійович Кругляк Одеський державний екологічний університет, Україна

DOI:

https://doi.org/10.15587/2313-8416.2015.47792

Ключові слова:

наноэлектроника, спинтроника, спиновый вентиль, спиновый потенциал, спиновый момент, спиновый ток

Анотація

В рамках концепции «снизу – вверх» наноэлектроники рассматриваются ключевые вопросы спинтроники – спиновый вентиль, граничное сопротивление при несовпадении мод проводимости, спиновые потенциалы и разность нелокальных спин-потенциалов, спиновый момент и его транспорт, уравнение Ландау-Лифшица-Гильберта применительно к выделенной оси магнита, обсуждаются обращение намагниченности спиновым током, поляризаторы и анализаторы спинового тока, а также обсуждаются уравнения диффузии для баллистического транспорта и токи в режиме неравновесных потенциалов

Біографія автора

Юрій Олексійович Кругляк, Одеський державний екологічний університет

Доктор хімічних наук, професор

Кафедра інформаційних технологій

Посилання

Krugljak, Ju. O., Krugljak, N. Ju., Striha, M. V. (2012). Uroky nanoelektroniky: vynyknennja strumu, formuljuvannja zakonu Oma i mody providnosti v koncepcii' «znyzu–vgoru». Sensorna elektronika i mikrosystemni tehnologii', 9 (4), 5–29.

Kruglyak Yu. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Co, 471. Available at: https://nanohub.org/courses/FoN1

Dyakonov, M. I., Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35 (6), 459–460. doi: 10.1016/0375-9601(71)90196-4

Julliere, M. (1975). Tunneling between ferromagnetic films. Physics Letters A, 54 (3), 225–226. doi: 10.1016/0375-9601(75)90174-7

Aronov, A. G., Pikus, G. E. (1976). Spinovaja inzhekcija v poluprovodnikah. Fizika i tehnika poluprov, 10, 1177–1180.

Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., Chazelas, J. (1988). Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61 (21), 2472–2475. doi: 10.1103/physrevlett.61.2472

Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39 (7), 4828–4830. doi: 10.1103/physrevb.39.4828

Mott, N. F. (1936). The Electrical Conductivity of Transition Metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 153 (880), 699–717. doi: 10.1098/rspa.1936.0031

Mott, N. F. (1964). Electrons in transition metals. Advances in Physics, 13 (51), 325–422. doi: 10.1080/00018736400101041

Pogorilyj, A. M., Rjabchenko, S. M., Tovstolytkin, O. I. (2010). Spintronika. Osnovni javyshha. Tendencii' rozvytku. Ukr. fiz. zhurn. Ogljady, 6 (1), 37–97.

Schmidt, G. (2005). Concepts for spin injection into semiconductors–a review. Journal of Physics D: Applied Physics, 38 (7), R107–R122. doi: 10.1088/0022-3727/38/7/r01

Valet, T., Fert, A. (1993). Theory of the perpendicular magnetoresistance in magnetic multilayers. Physical Review B, 48 (10), 7099–7113. doi: 10.1103/physrevb.48.7099

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336, 355–361.

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342

Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 2003.

Keldysh, L. V. (1964). Diagram Technique for Non-Equilibrium Processes. ZhJeTF, 47, 1515–1527.

Takahashi, S., Maekawa, S. (2003). Spin injection and detection in magnetic nanostructures. Physical Review B, 67 (5), 052409. doi: 10.1103/physrevb.67.052409

Tretjak, O. V., L'vov, V. A., Barabanov, O. V. (2002). Fizychni osnovy spinovoi' elektroniky. Kyi'v: Vyd-vo Kyi'vs'kogo universytetu, 314.

Danilov, Ju. A., Demidov, E. S., Ezhevskij, A. A. (2009). Osnovy spintroniki. Nizhnij Novgorod: Nizhegorodskij gosudarstvennyj universitet im. N. I. Lobachevskogoju, 173.

Aplesnin, S. S. (2010). Osnovy spintroniki. Sankt-Peterburg: Izd-vo LAN'', 288.

Tsoi, M., Jansen, A. G. M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P. (1998). Excitation of a Magnetic Multilayer by an Electric Current. Physical Review Letters, 80 (19), 4281–4284. doi: 10.1103/physrevlett.80.4281

Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N., Buhrman, R. A. (1999). Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science, 285 (5429), 867–870. doi: 10.1126/science.285.5429.867

Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B., Ralph, D. C. (2000). Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Physical Review Letters, 84 (14), 3149–3152. doi: 10.1103/physrevlett.84.3149

Berger, L. (1996). Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54 (13), 9353–9358. doi: 10.1103/physrevb.54.9353

Slonczewski, J. C. (1996). Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159 (1–2), L1–L7. doi: 10.1016/0304-8853(96)00062-5

Bazaliy, Y. B., Jones, B. A., Zhang, S.-C. (1998). Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Physical Review B, 57 (6), R3213–R3216. doi: 10.1103/physrevb.57.r3213

Sun, J. Z. (2000). Spin-current interaction with a monodomain magnetic body: A model study. Physical Review B, 62 (1), 570–578. doi: 10.1103/physrevb.62.570

Ralph, D. C., Stiles, M. D. (2008). Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320 (7), 1190–1216. doi: 10.1016/j.jmmm.2007.12.019

Landau, L. D., Lifshic, E. M. (1935). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Phys. Z. Sowjetunion, 8, 153–169.

Landau, L. D., Lifshica, E. M. (1969). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Moscow: Nauka, 1, 97.

Gilbert, T. L. (2004). Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Transactions on Magnetics, 40 (6), 3443–3449. doi: 10.1109/tmag.2004.836740

Zvezdin, A. K., Zvezdin, K. A., Hval'kovskij, A. V. (2008). Obobshhennoe uravnenie Landau – Lifshica i processy perenosa spinovogo momenta v magnitnyh nanostrukturah. UFN, 178, 436–442.

Mewes, T. et al. Magnetization dynamics including spin-torque. – Available at: http://www.bama.ua.edu/~tmewes/

Nanohub (2012). Available at: https://nanohub.org/groups/u

PurdueX (2015). Available at: https://www.edx.org/school/purduex

##submission.downloads##

Опубліковано

2015-08-20

Номер

Розділ

Фізико-математичні науки