Наноэлектроника «снизу – вверх»: начала спинтроники и магнетроники

Auteurs-es

  • Юрій Олексійович Кругляк Одесский государственный экологический университет, Ukraine

DOI :

https://doi.org/10.15587/2313-8416.2015.47792

Mots-clés :

наноэлектроника, спинтроника, спиновый вентиль, спиновый потенциал, спиновый момент, спиновый ток

Résumé

В рамках концепции «снизу – вверх» наноэлектроники рассматриваются ключевые вопросы спинтроники – спиновый вентиль, граничное сопротивление при несовпадении мод проводимости, спиновые потенциалы и разность нелокальных спин-потенциалов, спиновый момент и его транспорт, уравнение Ландау-Лифшица-Гильберта применительно к выделенной оси магнита, обсуждаются обращение намагниченности спиновым током, поляризаторы и анализаторы спинового тока, а также обсуждаются уравнения диффузии для баллистического транспорта и токи в режиме неравновесных потенциалов

Biographie de l'auteur-e

Юрій Олексійович Кругляк, Одесский государственный экологический университет

Доктор химических наук, профессор

Кафедра информационных технологий

Références

Krugljak, Ju. O., Krugljak, N. Ju., Striha, M. V. (2012). Uroky nanoelektroniky: vynyknennja strumu, formuljuvannja zakonu Oma i mody providnosti v koncepcii' «znyzu–vgoru». Sensorna elektronika i mikrosystemni tehnologii', 9 (4), 5–29.

Kruglyak Yu. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700

Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Co, 471. Available at: https://nanohub.org/courses/FoN1

Dyakonov, M. I., Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35 (6), 459–460. doi: 10.1016/0375-9601(71)90196-4

Julliere, M. (1975). Tunneling between ferromagnetic films. Physics Letters A, 54 (3), 225–226. doi: 10.1016/0375-9601(75)90174-7

Aronov, A. G., Pikus, G. E. (1976). Spinovaja inzhekcija v poluprovodnikah. Fizika i tehnika poluprov, 10, 1177–1180.

Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., Chazelas, J. (1988). Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61 (21), 2472–2475. doi: 10.1103/physrevlett.61.2472

Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39 (7), 4828–4830. doi: 10.1103/physrevb.39.4828

Mott, N. F. (1936). The Electrical Conductivity of Transition Metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 153 (880), 699–717. doi: 10.1098/rspa.1936.0031

Mott, N. F. (1964). Electrons in transition metals. Advances in Physics, 13 (51), 325–422. doi: 10.1080/00018736400101041

Pogorilyj, A. M., Rjabchenko, S. M., Tovstolytkin, O. I. (2010). Spintronika. Osnovni javyshha. Tendencii' rozvytku. Ukr. fiz. zhurn. Ogljady, 6 (1), 37–97.

Schmidt, G. (2005). Concepts for spin injection into semiconductors–a review. Journal of Physics D: Applied Physics, 38 (7), R107–R122. doi: 10.1088/0022-3727/38/7/r01

Valet, T., Fert, A. (1993). Theory of the perpendicular magnetoresistance in magnetic multilayers. Physical Review B, 48 (10), 7099–7113. doi: 10.1103/physrevb.48.7099

Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336, 355–361.

Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570

Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342

Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 2003.

Keldysh, L. V. (1964). Diagram Technique for Non-Equilibrium Processes. ZhJeTF, 47, 1515–1527.

Takahashi, S., Maekawa, S. (2003). Spin injection and detection in magnetic nanostructures. Physical Review B, 67 (5), 052409. doi: 10.1103/physrevb.67.052409

Tretjak, O. V., L'vov, V. A., Barabanov, O. V. (2002). Fizychni osnovy spinovoi' elektroniky. Kyi'v: Vyd-vo Kyi'vs'kogo universytetu, 314.

Danilov, Ju. A., Demidov, E. S., Ezhevskij, A. A. (2009). Osnovy spintroniki. Nizhnij Novgorod: Nizhegorodskij gosudarstvennyj universitet im. N. I. Lobachevskogoju, 173.

Aplesnin, S. S. (2010). Osnovy spintroniki. Sankt-Peterburg: Izd-vo LAN'', 288.

Tsoi, M., Jansen, A. G. M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P. (1998). Excitation of a Magnetic Multilayer by an Electric Current. Physical Review Letters, 80 (19), 4281–4284. doi: 10.1103/physrevlett.80.4281

Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N., Buhrman, R. A. (1999). Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science, 285 (5429), 867–870. doi: 10.1126/science.285.5429.867

Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B., Ralph, D. C. (2000). Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Physical Review Letters, 84 (14), 3149–3152. doi: 10.1103/physrevlett.84.3149

Berger, L. (1996). Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54 (13), 9353–9358. doi: 10.1103/physrevb.54.9353

Slonczewski, J. C. (1996). Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159 (1–2), L1–L7. doi: 10.1016/0304-8853(96)00062-5

Bazaliy, Y. B., Jones, B. A., Zhang, S.-C. (1998). Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Physical Review B, 57 (6), R3213–R3216. doi: 10.1103/physrevb.57.r3213

Sun, J. Z. (2000). Spin-current interaction with a monodomain magnetic body: A model study. Physical Review B, 62 (1), 570–578. doi: 10.1103/physrevb.62.570

Ralph, D. C., Stiles, M. D. (2008). Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320 (7), 1190–1216. doi: 10.1016/j.jmmm.2007.12.019

Landau, L. D., Lifshic, E. M. (1935). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Phys. Z. Sowjetunion, 8, 153–169.

Landau, L. D., Lifshica, E. M. (1969). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Moscow: Nauka, 1, 97.

Gilbert, T. L. (2004). Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Transactions on Magnetics, 40 (6), 3443–3449. doi: 10.1109/tmag.2004.836740

Zvezdin, A. K., Zvezdin, K. A., Hval'kovskij, A. V. (2008). Obobshhennoe uravnenie Landau – Lifshica i processy perenosa spinovogo momenta v magnitnyh nanostrukturah. UFN, 178, 436–442.

Mewes, T. et al. Magnetization dynamics including spin-torque. – Available at: http://www.bama.ua.edu/~tmewes/

Nanohub (2012). Available at: https://nanohub.org/groups/u

PurdueX (2015). Available at: https://www.edx.org/school/purduex

Téléchargements

Publié-e

2015-08-20

Numéro

Rubrique

Physics and mathematics