Наноэлектроника «снизу – вверх»: начала спинтроники и магнетроники
DOI :
https://doi.org/10.15587/2313-8416.2015.47792Mots-clés :
наноэлектроника, спинтроника, спиновый вентиль, спиновый потенциал, спиновый момент, спиновый токRésumé
В рамках концепции «снизу – вверх» наноэлектроники рассматриваются ключевые вопросы спинтроники – спиновый вентиль, граничное сопротивление при несовпадении мод проводимости, спиновые потенциалы и разность нелокальных спин-потенциалов, спиновый момент и его транспорт, уравнение Ландау-Лифшица-Гильберта применительно к выделенной оси магнита, обсуждаются обращение намагниченности спиновым током, поляризаторы и анализаторы спинового тока, а также обсуждаются уравнения диффузии для баллистического транспорта и токи в режиме неравновесных потенциалов
Références
Krugljak, Ju. O., Krugljak, N. Ju., Striha, M. V. (2012). Uroky nanoelektroniky: vynyknennja strumu, formuljuvannja zakonu Oma i mody providnosti v koncepcii' «znyzu–vgoru». Sensorna elektronika i mikrosystemni tehnologii', 9 (4), 5–29.
Kruglyak Yu. A. (2015). Nanoelectronics «bottom – up»: current generation, generalized ohm’s law, elastic resistors, conductivity modes, thermoelectricity. ScienceRise, 7/2 (12), 76–100. doi: 10.15587/2313-8416.2015.45700
Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Co, 471. Available at: https://nanohub.org/courses/FoN1
Dyakonov, M. I., Perel, V. I. (1971). Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35 (6), 459–460. doi: 10.1016/0375-9601(71)90196-4
Julliere, M. (1975). Tunneling between ferromagnetic films. Physics Letters A, 54 (3), 225–226. doi: 10.1016/0375-9601(75)90174-7
Aronov, A. G., Pikus, G. E. (1976). Spinovaja inzhekcija v poluprovodnikah. Fizika i tehnika poluprov, 10, 1177–1180.
Baibich, M. N., Broto, J. M., Fert, A., Van Dau, F. N., Petroff, F., Etienne, P., Chazelas, J. (1988). Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Superlattices. Physical Review Letters, 61 (21), 2472–2475. doi: 10.1103/physrevlett.61.2472
Binasch, G., Grünberg, P., Saurenbach, F., Zinn, W. (1989). Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Physical Review B, 39 (7), 4828–4830. doi: 10.1103/physrevb.39.4828
Mott, N. F. (1936). The Electrical Conductivity of Transition Metals. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 153 (880), 699–717. doi: 10.1098/rspa.1936.0031
Mott, N. F. (1964). Electrons in transition metals. Advances in Physics, 13 (51), 325–422. doi: 10.1080/00018736400101041
Pogorilyj, A. M., Rjabchenko, S. M., Tovstolytkin, O. I. (2010). Spintronika. Osnovni javyshha. Tendencii' rozvytku. Ukr. fiz. zhurn. Ogljady, 6 (1), 37–97.
Schmidt, G. (2005). Concepts for spin injection into semiconductors–a review. Journal of Physics D: Applied Physics, 38 (7), R107–R122. doi: 10.1088/0022-3727/38/7/r01
Valet, T., Fert, A. (1993). Theory of the perpendicular magnetoresistance in magnetic multilayers. Physical Review B, 48 (10), 7099–7113. doi: 10.1103/physrevb.48.7099
Sears, F. W., Salinger, G. L. (1975). Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. Boston: Addison-Wesley, 331–336, 355–361.
Kubo, R. (1957). Statistical-Mechanical Theory of Irreversible Processes. I. General Theory and Simple Applications to Magnetic and Conduction Problems. Journal of the Physical Society of Japan, 12 (6), 570–586. doi: 10.1143/jpsj.12.570
Martin, P. C., Schwinger, J. (1959). Theory of Many-Particle Systems. I. Physical Review, 115 (6), 1342–1373. doi: 10.1103/physrev.115.1342
Kadanoff, L. P., Baym, G. (1962). Quantum Statistical Mechanics. New York: W. A. Benjamin, 2003.
Keldysh, L. V. (1964). Diagram Technique for Non-Equilibrium Processes. ZhJeTF, 47, 1515–1527.
Takahashi, S., Maekawa, S. (2003). Spin injection and detection in magnetic nanostructures. Physical Review B, 67 (5), 052409. doi: 10.1103/physrevb.67.052409
Tretjak, O. V., L'vov, V. A., Barabanov, O. V. (2002). Fizychni osnovy spinovoi' elektroniky. Kyi'v: Vyd-vo Kyi'vs'kogo universytetu, 314.
Danilov, Ju. A., Demidov, E. S., Ezhevskij, A. A. (2009). Osnovy spintroniki. Nizhnij Novgorod: Nizhegorodskij gosudarstvennyj universitet im. N. I. Lobachevskogoju, 173.
Aplesnin, S. S. (2010). Osnovy spintroniki. Sankt-Peterburg: Izd-vo LAN'', 288.
Tsoi, M., Jansen, A. G. M., Bass, J., Chiang, W.-C., Seck, M., Tsoi, V., Wyder, P. (1998). Excitation of a Magnetic Multilayer by an Electric Current. Physical Review Letters, 80 (19), 4281–4284. doi: 10.1103/physrevlett.80.4281
Myers, E. B., Ralph, D. C., Katine, J. A., Louie, R. N., Buhrman, R. A. (1999). Current-Induced Switching of Domains in Magnetic Multilayer Devices. Science, 285 (5429), 867–870. doi: 10.1126/science.285.5429.867
Katine, J. A., Albert, F. J., Buhrman, R. A., Myers, E. B., Ralph, D. C. (2000). Current-Driven Magnetization Reversal and Spin-Wave Excitations in Co/Cu/Co Pillars. Physical Review Letters, 84 (14), 3149–3152. doi: 10.1103/physrevlett.84.3149
Berger, L. (1996). Emission of spin waves by a magnetic multilayer traversed by a current. Physical Review B, 54 (13), 9353–9358. doi: 10.1103/physrevb.54.9353
Slonczewski, J. C. (1996). Current-driven excitation of magnetic multilayers. Journal of Magnetism and Magnetic Materials, 159 (1–2), L1–L7. doi: 10.1016/0304-8853(96)00062-5
Bazaliy, Y. B., Jones, B. A., Zhang, S.-C. (1998). Modification of the Landau-Lifshitz equation in the presence of a spin-polarized current in colossal- and giant-magnetoresistive materials. Physical Review B, 57 (6), R3213–R3216. doi: 10.1103/physrevb.57.r3213
Sun, J. Z. (2000). Spin-current interaction with a monodomain magnetic body: A model study. Physical Review B, 62 (1), 570–578. doi: 10.1103/physrevb.62.570
Ralph, D. C., Stiles, M. D. (2008). Spin transfer torques. Journal of Magnetism and Magnetic Materials, 320 (7), 1190–1216. doi: 10.1016/j.jmmm.2007.12.019
Landau, L. D., Lifshic, E. M. (1935). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Phys. Z. Sowjetunion, 8, 153–169.
Landau, L. D., Lifshica, E. M. (1969). K teorii dispersii magnitnoj pronicaemosti ferromagnitnyh tel. Moscow: Nauka, 1, 97.
Gilbert, T. L. (2004). Classics in Magnetics A Phenomenological Theory of Damping in Ferromagnetic Materials. IEEE Transactions on Magnetics, 40 (6), 3443–3449. doi: 10.1109/tmag.2004.836740
Zvezdin, A. K., Zvezdin, K. A., Hval'kovskij, A. V. (2008). Obobshhennoe uravnenie Landau – Lifshica i processy perenosa spinovogo momenta v magnitnyh nanostrukturah. UFN, 178, 436–442.
Mewes, T. et al. Magnetization dynamics including spin-torque. – Available at: http://www.bama.ua.edu/~tmewes/
Nanohub (2012). Available at: https://nanohub.org/groups/u
PurdueX (2015). Available at: https://www.edx.org/school/purduex
Téléchargements
Publié-e
Numéro
Rubrique
Licence
(c) Tous droits réservés Юрій Олексійович Кругляк 2015
Cette œuvre est sous licence Creative Commons Attribution 4.0 International.
Our journal abides by the Creative Commons CC BY copyright rights and permissions for open access journals.
Authors, who are published in this journal, agree to the following conditions:
1. The authors reserve the right to authorship of the work and pass the first publication right of this work to the journal under the terms of a Creative Commons CC BY, which allows others to freely distribute the published research with the obligatory reference to the authors of the original work and the first publication of the work in this journal.
2. The authors have the right to conclude separate supplement agreements that relate to non-exclusive work distribution in the form in which it has been published by the journal (for example, to upload the work to the online storage of the journal or publish it as part of a monograph), provided that the reference to the first publication of the work in this journal is included.