Cosmic sources of the Earth's atmosphere ionization (review)


  • L.V. Raychenko S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine
  • G.V. Melnik S.I. Subbotin Institute of Geophysics, National Academy of Sciences of Ukraine, Ukraine



galactic cosmic rays, solar cosmic rays, ionization of atmosphere


 Characteristics of the Earth's upper atmosphere vary constantly under the action of electromagnetic emission of the sun, solar wind, streams of galactic and solar cosmic rays as well as of precipitation of captured magnetosphere electrons. Depending on their energies charged particles and solar radiation penetrate into different atmospheric layers ionizing them and changing their composition, dynamic and temperature characteristics that finally produce essential climatic variations. Up to recent period the particles of galactic cosmic rays were taken into consideration as the main source of ionization of the lower layers of the atmosphere. Development of the measuring equipment and accumulation of long series of satellite and terrestrial observations as well as simultaneous improvement of model calculations allowed attaining a considerable progress in the studies of the whole series of corpuscular streams ionizing the Earth's atmosphere from the surface to the upper atmosphere. Different sources ionizing the Earth's atmosphere have been considered in this review. It has been shown that considerable part in ionizing atmosphere belongs to the particles of solar origin with concentration in circumterrestrial space much higher than was considered before and their streams are not only sporadic but also continuous. Accounting of multiplicity of solar sources of ionization may turn out useful while modeling climatic variations in short and long temporal scales


Avakyan S. V., 2008. Physics of solar-terrestrial coupling: results, problems and new approaches. Geomagnetism and Aeronomy 48(4), 417—424 (in Russian). doi: 10.1134/S0016793208040014.

Antonov A. V., Gerasimov Yu. M., 2011. Estimation of the influence of solar flares on the Earth's troposphere. Kosmichna nauka i tekhnologiya 17(1), 47—51 (in Russian).

Artamonova I. V., Veretenenko S. V., 2011. Influence of variations of galactic cosmic rays on dynamic processes in the lower atmosphere. Vestnik SPbGU. Ser. 4(is. 2), 15—23 (in Russian).

Bazilevskaya G. A., Makhmutov V. S., Svirzhevskaya A. K., Svirzhevskiy N. M., 2009. Dynamics of charged particle fluxes in Earth's troposphere Sciences: Physics 73(3), 387—389 (in Russian). doi: 10.3103/S106287380 9030320.

Ginzburg V. L., Gurevich A. V., 1960. Nonlinear phenomena in a plasma located in an alternating electromagnetic field. Sov. Phys. Usp. 70(3), 175—194. (in Russian). doi: 10.1070/PU1960v003n02ABEH003267.

Kilifarska N. A., Bakhmutov V. G., Melnik G. V., 2016. Relationship of climate changes with geomagnetic field. 3. Northern and Southern hemisphere. Geofizicheskiy zhurnal 38(3), 52—71 (in Russian).

Kocharov G. E., 1976. Nuclear reactions to the Sun. Moscow: Znaniye, 64 p. (in Russian).

Krivolutskiy A. A., Repnev A. I., 2012. Impact of space energetic particles on the Earth's atmosphere (a review). Geomagnetism and Aeronomy 52(6), 685—716 (in Russian). doi: 10.1134/S0016793212060060.

Krivolutskiy A. A., Kuminov A. A., Kukoleva A. A., Repnev A. I., Pereyaslova R. K., Nazarova M. N., 2008. Solar proton activity during cycle 23 and changes in the ozonosphere: Numerical simulatiuon and analysis of observational data. Geomagnetism and Aeronomy 48(4), 432—445 (in Russian). doi: 10.1134/S0016793208040038.

Raychenko L. V., 2010. Influence of solar corpuscular radiation on the Earth's atmosphere: the current state of the problem. Geofizicheskiy zhurnal 32(5), 82—101 (in Russian).

Raychenko L. V., 1982. On the effect of the MMF sector structure on the propagation of particles accelerated in small flares on the Sun. In: Interpretation technique and results of studies of anomalous geophysical fields. Kiev: Naukova Dumka, 127 p. (in Russian).

Syrovatskiy S. I., Somov B. V., 1982. The physics of solar flares. The theory of observed manifestations of flares. In: Flashes on stars (supernovas, X-ray sources, Sun). Vol. 21. Moscow: Academy of Sciences of the USSR, P. 221—237 (in Russian).

Shuyskaya F. K., Galperin Yu. I., Kovrazhkin R. A., Kuzmin A. K., Stepanov V. A., Gorn L. S., Khazanov B. I., 1998. Measurements of energetic charged particles at high latitudes: experiment SCA3 on the satellite Interball2 (Auroral probe). Kosmicheskiye issledovaniya 36(1), 86—97 (in Russian).

Bazilevskaya G. A., Makhmutov V. S., Stozhkov Y. I. Svirzhevskaya A. K., Svirzhevsky N. S., 2010. Solar proton events recorded in the stratosphere during cosmic ray balloon observations in 1957—2008. Adv. Space Res. 45(5), 603—613. doi: 10.1016/j.asr.2009.11.009.

Bazilevskaya G. A., Usoskin I. G., Fltickiger E. O., Harrison R. G., Desorgher L., Butikofer R., Krainev M. B., Makhmutov V. S., Stozhkov Y. I., Svirzhevskaya A. K., Svirzhevsky N. S., Kovaltsov G. A., 2008. Cosmic ray induced ion production in the atmosphere. Space Sci. Rev. 137, 149—173. doi: 10.1007/s11214-008-9339-y.

Burlaga L. F., Skoug R. M., Smith C. W., Webb D. F., Zurbuchen T. H., Reinard A., 2001. Fast ejecta during the ascending phase of solar cycle 23: ACE observations, 1998—1999. J. Geophys.Res. 106(A10), 20957—20977. doi: 10.1029/2000JA000214.

Callis L. B.,Natarajan M., Evans D. S., Lambeth J. D., 1998. Solar atmospheric coupling by electrons (SOLACE): 1. Effects of May 12, 1997 solar event on the middle atmosphere. J. Geophys.Res. 103 (D21), 28405—28419. doi: 10.1029/98JD02408.

Callis L. B., Natarajan M., Lambeth J. D., 2001. Solar- atmospheric coupling by electrons (SOLACE) 3. Comparisons of simulations and observations 1979—1997 issues and implications. J. Geophys. Res. 106(D7), 7523—7539. doi: 10.1029/2000JD900615.

Callis L. B., Natarajan M., Lambeth J. D., 2002. Observed and calculated mesospheric NO, 1992— 1997. Geophys. Res. Lett. 29(2), 17-1—17-4. doi: 10.1029.2001GL013995.

Chupp E. L., 1996. Evolution of our understanding of solar flare particle acceleration: (1942—1995). In: High Energy Solar Physics. AIP Publ. 374, 3—31.

Cliver E., 1996. Solar flare gamma-ray emission and energetic particles in space. In: High Energy Solar Physics. AIP Publ. 374, 45—60.

CliverE. W., 2006. The Unusual Relativistic Solar Proton Events of 1979 August 21 and 1981 May 10. Astrophys. J. 639, 1206—1217. doi:10.1086.499765.

Cliver E., Boriakoff V., Feynman J., 1998. Solar variability and climate change: geomagnetic aa index and global surface temperature. Geophys. Res. Lett. 25, 1035—1038. doi: 10.1029/98GL00499.

Crosby N. B., Aschwanden M. J., Dennis B. R., 1993. Frequency distributions and correlations of solar X-ray flare parameters. Solar Phys. 143, 275—299. doi: 10.1007/BF00646488.

Cyr O. C. St., Howard R. A., Sheeley Jr. N. R., Plunkett S. P., Michels D. J., Paswaters S. E., Koomen M. J., Simnett G. M., Thompson B. J., Gurman J. B., Schwenn R., Webb D. F., Hildner E., Lamy P. L., 2000. Properties of coronal mass ejections' SOHO LASCO observations from January 1996 to June 1998. J. Geophys. Res. 105(A8), 18169—18185. doi: 10.1029/1999JA000381.

Desorgher L., Fluckiger E. O., Gurtner M., Moser M. R., Butikofer R., 2005. ATMOCOSMICS: a GEANT4 code for computing the interaction of cosmic rays with the Earth's atmosphere. Int. J. Mod. Phys. A20, 6802—6804. doi: 10.1142.S0217751X05030132.

Dietrich W., Lopate C., 1999. Measurements of iron reach SEP events using the University of Chicago IMP8 instrument: Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, USA. Vol. 6. P. 71—74.

Duplissy J., Enghoff M. B., Aplin K. L., Arnold F., Aufmhoff H., Avngaard M., Baltensperger U., Bondo T., Bingham R., Carslaw K., Curtius J., David A., Fastrup B., Gagne S., Hahn F., Harrison R. G., Kellett B., Kirkby J., Kulmala M., Laakso L., Laaksonen A., Lillestol E., LockwoodM., Makela J., Makhmutov V., Marsh N. D., Nieminen T., Onnela A., Pedersen E., Pedersen J. O. P., Polny J., Reichl U., Seinfeld J. H., Sipila M., Stozhkov Y., Stratmann F., Svensmark H., Svensmark J., Veenhof R., Verheggen B., Viisanen Y., Wagner P. E., Wehrle G., Weingartner E., Wex H., Wilhelmsson M., Winkler P. M., 2010. Results from the CERN pilot CLOUD experiment. Atmos. Chem. Phys. 10(4), 1635—1647. doi: 10.5194/acp-10-1635-2010.

Enghoff M. B., Pedersen J. O. P., Uggerhwj U. I., Paling S. M., Svensmark H., 2011. Aerosol nucleation induced by a high energy particle beam. Geophys. Res. Lett. 38(9), L09805. doi: 10.1029.2011GL047036.

Ferguson E. E., 1979. "Ion Chemistry of the Middle Atmosphere" in NASA CP 2090. National Aeronautics and Space Administration. P. 71—88.

Feynman J., Spitale G., Wang J., Gabriel S., 1993. Interplanetary proton fluence model: JPL 1991. J. Geophys. Res. 98, 13281. doi: 10.1029/92JA02670.

Frame T. H. A., Gray L. J., 2010. The 11-year solar cycle in ERA-40 data: An update to 2008. J. Climate 23, 2213—2222. doi: 10.1175/2009JCLI3150.1.

Geller M. A., Alpert J. C., 1980. Planetary wave coupling between the troposphere and the middle atmosphere as a possible Sun-weather mechanism. J. Atmos. Sci. 37, 1197—1215. doi: http://dx.doi. org/10.1175/1520-0469(1980)037<1197: PWCB TT>2.0.CO;2.

Gladysheva O. G., Iwasaka Y., Kocharov G. E., Muraki Y., 1995. Unique possibility to obtain upper limit of total energy induced by solar flare protons: Proc. 24th Int. Cosmic Ray Conf., Rome, Italy. Vol. 4, P. 1129—1131.

Gopalswamy N., Yashiro S., Kaiser M. L., Howard R. A., Bougeret J.-L., 2001. Radio signatures of coronal mass ejection interaction: coronal mass ejection cannibalism? Astrophys. J. Lett. 548, L91—L94.

Gopalswamy N., Hie H., Yashiro S., Usoskin I., 2005. Coronal mass ejections and ground level enhancements: Proc. 29th Int. Cosmic Ray Conf., Pune, India. Vol. 1, P. 169—172.

Gray L. J., Beer J., Geller M., Haigh J. D., Lockwood M., Matthes K., Cubasch U., Fleitmann D., Harrison G., HoodL., Luterbacher J., Meehl G. A., Shindell D., van Geel B., White W., 2010. Solar influences on climate. Rev. Geophys. 48, RG4001. doi: 10.1029/2009RG000282.

Haigh J. D., Blackburn M., 2006. Solar influences on dynamical coupling between the stratosphere and troposphere. Space Sci. Rev. 125, 331—344. doi: 10.1007/s11214-006-9067-0.

Jackman C. H., Fleming E. L., Vitt F. M, 2000. Influence of extremely large solar proton events in changing stratosphere. J. Geophys. Res. 105(D9), 11659—11670. doi: 10.1029/2000JD900010.

Jackman C. H., Marsh D. R., Vitt F. M., Roble R. G., Randall C. E., Bernath P. F., Funke B., Lуpez- Puertas M., Versick S., Stiller G. P., Tylka A. J., Fleming E. L., 2011. Northern Hemisphere atmospheric influence of the solar proton events and ground level enhancement in January 2005. Atmos. Chem. Phys. 11, 6153—6166. doi: 10.5194.acp-11-6153-2011.

Jackman C. H., Marsh D. R., Vitt F. M., Garcia R. R., Fleming E. L., Labow G. J., Randall C. E., Lуpez-Puertas M., von Clarmann T., Stiller G. P., 2008. Short- and medium-term atmospheric constituent effects of very large solar proton events. Atmos. Chem. Phys. 8, 765—785. doi: 10.5194/acp-8-765-2008.

Kahler S. W., 1993. Coronal mass ejections and long risetimes of solar energetic particle events. J. Geophys. Res. 98(A4), 5607—5615. doi: 10.1029/92JA02605.

Kahler S. W., Cliver E. W., Cane H. V., McGuire R. E., Reames D. V., Sheeley Jr. N. R., Howard R. A., 1987. Solar energetic proton events and coronal mass ejections near solar minimum: Proc. 20th Int. Cosmic Ray Conf., Vol. 3, 121 p.

Kahler S. W., Vourlidas A., 2005. Fast coronal mass ejection environments and the production of solar energetic particle events. J. Geophys. Res. 110, A12S01. doi: 10.1029/2005JA011073.

Kocharov L., Torsti J., Cyr O. C. St., Huhtanen T., 2001. A relation between dynamics of coronal mass ejections and production of solar energetic particles. Astron. Astrophys. 370, 1064—1070. doi: 10.1051/0004-6361:20010241.

Krivova N. A., Balmaceda L., Solanki S. K., 2007. Reconstruction of solar total irradiance since 1700 from the surface magnetic flux. Astron. Astrophys. 467, 335—346. doi: 10.1051/0004-6361:20066725.

Kurt V. G., Logachev Yu. I., Stolpovsky V. G., Daibog E. I., 1981. Energetic solar particle spectra according to Venera-11, 12 and Prognoz-5, 6 observations: Proc. 17th Int. Cosmic Ray Conf., Paris, France. Vol. 3, P. 69—72.

Miller J. A., Cargill P. J., Emslie A. G., Holman G. D., Dennis B. R., La Rosa T. N., Winglee R. M., Benkaand S. G., Tsuneta S., 1997. Critical issues for understanding particle acceleration in impulsive solar flares. J. Geophys. Res. 102, 14631—14659. doi: 10.1029/97JA00976.

Mironova I. A., Desorgher L., Usoskin I. G., Flückiger E. O., Bütikofer R., 2008. Variations of aerosol optical properties during the extreme solar event in January 2005. Geophys. Res. Lett. 35, L18610. doi: 10.1029.2008GL035120.

Miroshnichenko L. I., Perez-Peraza J. A., 2008. Astrophysical aspects in the studies of solar cosmic rays. Int. J. Mod. Phys. 23(1), 1—141. doi: 10.1142/S0217751X08037312.

Mishev A. L., Velinov P. I. Y., Mateev L., Tassev Y., 2011. Ionization effect of solar protons in the Earth atmosphere — case study of the 20 January 2005 SEP event. Adv. Space Res. 48(7), 1232—1237. doi: 10.1016/j.asr.2011.06.004.

Murphy R. J., Share G. H., 2005. What gamma-ray de excitation lines reveal about solar flares. Adv. Space Res. 35(10), 1825—1832. doi: 10.1016/j.asr.2005.03.004.

Prolss G. W., 2004. Physics of the Earth's Space Environment: an Introduction. Berlin: Springer, 275 p. doi: 10.1007/978-3-642-97123-5.

Randel W. J., Wu F., 2007. A stratospheric ozone profile dataset for 19792005: Variability, trends and comparisons with column ozone data. J. Geophys. Res. 112, D06313. doi: 10.1029.2006JD007339.

Reames D. V., 2002. Magnetic topology of impulsive and gradual solar energetic particle events. Astrophys. J. 571, L63—L66. Doi: 10.1086/341149.

Reames D. V., 2000. Abundances of Trans-Iron Elements in Solar Energetic Particle Events. Astrophys. J. 540(2), L111—L114. Doi:10.1086/312886.

Reedy R. C., 1980. Lunar radionuclide records of average solar cosmic ray fluxes over the last ten million years: Proc. Conf. Ancient Sun. New York: Pergamon Press, P. 365—386.

Shea M. A., Smart D. F., Dreschhoff G. A. M., Zeller E. J., 1993. The flux and fluence of major solar proton events and their record in Antarctic snow. Reprint from 23rdInternational Cosmic Ray Conference. Conference Papers, Vol. 3, P. 846— 849.

Smart D., Shea M., 1971. Solar proton event classification system. Sol. Phys. 16, 484—487. doi: 10.1007/bf00162491.

Stendel M., Mogensen I. A., Christensen J. H., 2006. Influence of various forcings on global climate in historical times using a coupled atmosphere-ocean general circulation model. Clim. Dyn. 26, 1—15. doi:10.1007.s00382-005-0041-4.

Torsti J., Anttila A., Kocharov L., Makela P., Riihonen E., Sahla T., Teittinen M., Valtonen E., Laitinen Т., Vainio R., 1998. Energetic (~ 1 to 50 MeV) proton associated with Earth-directed coronal mass ejections. Geophys. Res. Lett. 25(14), 2525— 2528. doi: 10.1029/98GL50062.

Tung K. K., Zhou J., Camp C. D., 2008. Constraining model transient climate response using independent observations of solar-cycle forcing and response. Geophys. Res. Lett. 35, L17707. doi: 10.1029/2008GL034240.

Tylka A. J., Cohen C. M. S., Dietrich W. F., Lee M. A., Maclennan C. G., Mewaldt R. A., Ng C. K., Reames D. V., 2005. Shock Geometry, Seed Populations, and the Origin of Variable Elemental Composition at High Energies in Large Gradual Solar Particle Events. Astrophys. J. 625, 474—495. doi: 10.1086/429384.

Tylka A. J., Dietrich W. F., Lopate C., Reames D. V., 1999. High Energy Solar Fe Ions in the 29 September 1989 Ground Level Event: Proc. 26th Int. Cosmic Ray Conf., Salt Lake City, 6, 6770.

Usoskin I. G., Kovaltsov G. A., 2006. Cosmic ray induced ionization in the atmosphere: Full modeling and practical applications. J. Geophys. Res. 111, D21206. doi:10.1029.2006JD007150.

Usoskin I. G., Alanko-Huotari K., Kovaltsov G. A., Mursula K., 2005. Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951— 2004. J. Geophys. Res. 110, A12108. doi: 10.1029.2005JA011250.

Usoskin I. G., Gladysheva O. G., Kovaltsov G. A., 2004. Cosmic ray — induced ionization in the atmosphere: spatial and temporal changes. J. Atmos. Sol.-Terr. Phys. 66, 1791—1796. doi: 10.1016/j.jastp.2004.07.037.

Usoskin I. G., Kovaltsov G. A., Mironova I. A., Tylka A. J., Dietrich W. F., 2011. Ionization effect of solar particle GLE events: Low and middle atmosphere. Atmos. Chem. Phys. 11 (is. 5), 1979— 1988.! 1/1979/ 2011/acp-11-1979-2011.

Velinov P. I. Y., Asenovski S., Kudela K., Lastovicka J., Mateev L., Mishev A., Tonev P., 2013. Impact of cosmic rays and solar energetic particles on the Earth's ionosphere and atmosphere. J. Space Weather Space Clim. 3, A14. doi: 10.1051/swsc/2013036.

Vitt F., Jackman C., 1996. A comparison of sources of odd nitrogen production from 1974 through 1993 in the Earth's middle atmosphere as calculated using a two dimensional model. J. Geophys. Res. 101, 6729—6739. doi: 10.1029.95JD03386.

Zeller E. J., Dreschho G. A. M., Laird C. M., 1986. Nitrate flux on the Ross Ice Shelf, Antarctica and its relation to solar cosmic rays. Geophys. Res. Lett. 13, 1264—1267. doi: 10.1029/GL013i012p 01264.



How to Cite

Raychenko, L., & Melnik, G. (2017). Cosmic sources of the Earth’s atmosphere ionization (review). Geofizicheskiy Zhurnal, 39(3), 40–63.