Energy balance of the Earth’s tectonosphere

V. Gordienko

Abstract


Concentration of K, U and Th has been investigated in the rocks of the Earth’s crust and upper mantle of platforms, geosynclines and oceans. The coinsidence has been found between total modern heat emanation in the crust and upper mantle of three types of regions with significant differences in the distribution of sources in depth. The values of upper mantle rocks radiogenic heat generation in these regions are about 0.04, 0.06 and 0.08 μW/m3 respectively. Correspondence of heat generation to geological history, heat flow and deep temperatures has been set for platforms. Implementation of energy conservation law in geological processes has been proven.


Keywords


upper mantle; radiogenic heat generation; deep processes

References


Anisimova I. V., Salnikova E. B., Kozakov I. K., Terent'eva L. B., Kovach V. P., Fedoseenko A. M., Yakovleva S. Z., 2012. Baikal early age (U-Pb zircon method) conglomerates kholbonursk complex Songinsky block caledonides Central Asia. Proc. of the conf. «Geochronometric isotopic systems». Moscow: IGEM RAS, P. 36—39 (in Russian).

Bibikova E. V., Gracheva T. V., Makarov V. A., Nozhkin A. D., 1993. Age boundaries in the geological evolution of Early Precambrian of Yenisey range. Izvestiya RAN. Stratigrafiya i geologicheskaya korrelyatsiya 1(1), 35—40 (in Russian).

Gordienko V. V., 1998. Deep Processes in Earth’s Tectonosphere. Kiev: Publ. IG NASU, 85 p. (in Russian).

Gordienko V. V., 2009a. On the deep processes in tectonosphere Baltic Shield in the Early Precambrian. Geofizicheskiy zhurnal 31(3), 3—17 (in Russian).

Gordienko V. V., 2009b. On Precambrian deep processes in tectonosphere continents. Geofizicheskiy zhurnal 31(5), 85—102 (in Russian).

Gordienko V. V., 2010. On the nature of the anomalies of the longitudinal velocity of seismic waves in the upper mantle. Geofizicheskiy zhurnal 32(3), 43—63 (in Russian).

Gordienko V. V., 1999. Density models of Ukrain’s tectonosphere. Kiev: Intelect, 101 p. (in Russian).

Gordienko V. V., 2012. Processes in Earth’s Tectonosphere (Advection-polymorphous Hypothesis). Saarbrücken: LAP, 256 p. (in Russian).

Gordienko V. V., 2000. Physical properties of rocks deep depressions. Geofizicheskiy zhurnal 21(2), 19—26 (in Russian).

Gordienko V. V., 2014. Energy of deep processes on the continents and oceans. Geologiya i poleznye iskopaemye Mirovogo okeana (4), 48—72 (in Russian).

Gordienko V. V., Gordienko L. Ya., 2013a. On the PT conditions in the mantle magma chambers beneath the Atlantic Ocean. Geologiya i poleznye iskopaemye Mirovogo okeana 4, 63—78 (in Russian).

Gordienko V. V., Gordienko L. Ya., 2013b. On the PT conditions in the mantle magma chambers beneath the Pacific Ocean. Geologiya i poleznye iskopaemye Mirovogo okeana (2), 47—63 (in Russian).

Gordienko V. V., Gordienko I. V., Zavgorodnyaya O. V. Kovachikova S., Logvinov I. M., Tarasov V. N., Usenko O. V., 2005. Ukrainian Shield (geophysics, deep processes). Kiev: Korvin press, 210 p. (in Russian).

Precambrian to the Phanerozoic fold belts. Ed. K. O. Kratc, A. K. Zapol'nov. Leningrad: Nauka, 1982, 232 p. (in Russian).

Komarov A. N., Zhitkov A. S., 1973. Uranus in ultramafic xenoliths from basalts. Izvestiya AN SSSR. Ser. geologicheskaya (10), 79—85 (in Russian).

Nozhkin A. D., Bayanova T. B., Berezhnaya N. G., Dmitrieva N. V., Larionov A. N., 2012. Sedimentary and volcanic-sedimentary series of the late Neoproterozoic rift structures southwestern margin of the Siberian craton: data on the composition, age, education and environment features metallogeny. Proc. of the conf. «Geochronometric isotopic systems». Moscow: IGEM RAS, P. 257—260 (in Russian).

Nozhkin A. D., Malyshev V. I., Sumin A. V., Ostapenko E. I., Gerya T. V., 1989. Geochronological study of metamorphic complexes of the southwestern part of the Siberian platform. Geologiya i geofizika (1), 26—33 (in Russian).

Pronin A. A., 1973. Alpine tectonic cycle of the Earth's history. Mesozoic. Cenozoic. Leningrad: Nauka, 318 p. (in Russian).

Pronin A. A., 1965. The main features of the tectonic development of the Urals. Moskow: Nauka, 160 p. (in Russian).

Ringwood A. E., 1981. Structure and petrology of the Earth’s mantle. Moskov: Nedra, 584 p. (in Russian).

Savko A. D., Shevyrev L. T., 2002. A new look at the role of avlakogeneza the formation of diamond-bearing magmatic bodies. Vestnik Voronezhskogo gosudarstvennogo universiteta. Obschaya geologiya (1), 7—18 (in Russian).

Sobolev V. S., Sobolev V. N., 1980. New evidence dive to great depths eclogitized crustal rocks. Doklady AN SSSR 250(3), 683—685 (in Russian).

Sorokhtin O. G., Ushakov S. A., 1990. The global evolution of the Earth. Moscow: Nauka, 446 p. (in Russian).

Tripol'skiy A. A., Sharov N. V., 2004. Lithosphere of Precambrian shields the northern hemisphere from seismic data. Petrozavodsk: KRC RAS Publ., 159 p. (in Russian).

Ukhanov A. V., Ryabchikov I. D., Har'kiv A. D., 1988. Lithospheric mantle of the Yakutian kimberlite province. Moscow: Nauka, 288 p. (in Russian).

Shul'diner V. I., 1982. Precambrian basement Pacific Belt and framing platforms. Moscow: Nauka, 227 p. (in Russian).

Ackerman L., Mahlen N., Nek E., Medaris G., Rulrych J., Stranad L., Mihaljevic M., 2007. Geochemistry and Evolution of Subcontinental Lithospheric Mantle in Central Europe: Evidence from Peridotite Xenoliths of the Kozakov Volcano, Czech Republic. J. Petrology 48(12), 2235—2260.

Anderson D., 1983. Chemical composition of the mantle. J. Geophys. Res. 88, 1341—1352.

Anderson D., 1989. Theory of the Earth. Boston: Blackwell Sci. Publ. 211 p.

Asavin A., Kogarko L., Kryuchkova O., Tyurin D., Kolesov G., 1997. Grand Canary, Saint Helena, and Tristan da Cunha Oceanic Islands: Variations of Trace Element Partition Coefficients in Pyroxene-Melt Equilibria during Alkaline Magma Evolution. Geochem. Int. 5, 415—423.

Aumento F., Hyndman R., 1971. Uranium content of the oceanic upper mantle. Earth Planet. Sci. Lett. 12(4), 373—384.

Balashov Yu., 2009. Development of a Heterogeneity in the Lithosphere: Geochemical Evidence. J. Petrology 1, 97—107.

Binns R., 2004. Spinifex-Textured Basalt Xenoliths at PACMANUS, Papua New Guinea. ODP. Data Report 193.

Bloomer S. H., 1985. Petrology and Relict Mineralogy of Serpentinites. Deep Sea Drilling Project. Report and Publication 84, 643—653.

Board W., Frimmel H., Armstrong A., 2005. Pan-African Tectonism in the Western Maud Belt: P-T-t Path for High-grade Gneisses in the H. U. Sverdrupfjella, East Antarctica. J. Petrology 46(4), 671—699. doi:10.1093/petrology/egh093.

Bonadiman C., Beccaluva L., Coltorti, Siena F. M., 2005. Kimberlite-like Metasomatism and ‘Garnet Signature’ in Spinel-peridotite Xenoliths from Sal, Cape Verde Archipelago: Relics of a Subcontinental Mantle Domain within the Atlantic Oceanic Lithosphere? J. Petrology 46(11), 2465—2493.

Bonatti E., Ottonelo G., Hamlin P., 1986. Peridotites from the island of Zabargad (st. John), Red sea: Petrology and Geochemistry. J. Geophys. Res. 91(B1), 599—631.

Bourgois J., Desmet A., 1985. Mafic and ultramafic rocks. Deep Sea Drilling Project. Report and Publication 84, 633—642.

Boyd F., 1989. Comðositional distinction between oceanic and cratonic lithosphere. Earth Planet. Sci. Lett. 96(1/2), 16—26.

Cannatelli C., Frezzotti M., Zanon V., Petrelli M., Neumann E., Peccerillo A., 2011. Heterogeneous refertilization of the upper mantle beneath the Azorean volcanoes. Evidence from mantle xenoliths. American Geophysical Union, Fall Meeting 2011, abstract #T51H-2461.

Casey J., 1997. Comparison of major- and trace-element Geochemistry of abyssal Peridotites and mafic plutonic Rocks with Basalts from the MARK Region of the Mid-Atlantic Ridge. Proceedings of the Ocean Drilling Program, Scientific Results 153, P. 181—241.

Dmitriev L., 1977. Petrochemistry of basalts and plutonic rocks. Deep Sea Drilling Project. Report and Publication 37, 681—693.

Downes H., Macdonald R., Upton B., Cox K., Bodinier J., Mason P., 2004. Ultramafic Xenoliths from the Bearpaw Mountains, Montana, USA: Evidence for Multiple Metasomatic Events in the Lithospheric Mantle beneath the Wyoming Craton. J. Petrology 45(8), 1631—1662.

Eardley A., 1951. Structural geology of North America. New York: Harper & Bros., 624 p.

Embey-Isztin A., Scharbert H., Dietrich H., Poultidis H., 1989. Petrology and Geochemistry of Peridotite Xenoliths in Alkali Basalts from the Transdanubian Volcanic Region, West Hungary. J. Petrology 30(1), 79—105.

Feininger T., 1980. Eclogite and Related High-Pressure Regional Metamorphic Rocks from the Andes of Ecuador. J. Petrology 21(1), 107—140.

Francis D., 1976. The Origin of Amphibole in Lherzolite Xenoliths from Nunivak Island, Alaska. J. Petrology 17(3), 357—378.

Gang Xu Yi., Bodinier J.-L., 2004. Contrasting Enrichments in High- and Low-Temperature Mantle Xenoliths from Nushan, Eastern China: Results of a Single Metasomatic Event during Lithospheric Accretion? J. Petrology 45(2), 321—148.

Gao S., Rudnick R. L., Xu W.-L., Yuan H.-L., Liu Y.-S., Walker R. J., Puchtel I. S., Liu X.-M., Huang H., Wang X.-R., Yang J., 2008. Recycling deep cratonic lithosphere and generation of intraplate magmatism in the North China Craton. Earth Planet. Sci. Lett. 270(1-2), 41—53.

Garuti G., Bea F., Zaccarini F., Montero P., 2001. Age, Geochemistry and Petrogenesis of the Ultramafic Pipes in the Ivrea Zone, NW Italy. J. Petrology 42(2), 433—457.

Gasperini D., Bosch D., Braga R., Bondi M., Macera P., Morten L., 2006. Ultramafic xenoliths from the Veneto Volcanic Province (Italy): Petrological and geochemical evidence for multiple metasomatism of the SE Alps mantle lithosphere. Geochem. J. 40, 377—404.

Glebovitsky V., Nikitina L., Saltykova A., Pushkarev Yu., Ovchinnikov N., Babushkina M., Ashchepkov I., 2007. Thermal and Chemical Heterogeneity of the Upper Mantle beneath the Baikal Mongolia Territory. Petrology 15, 58—89.

Green D., Falloon T., 2005. Primary magmas at mid-ocean ridges, «hotspots», and other intraplate settings: Constraints on mantle potential temperature. Geol. Soc. Amer. Spec. Paper 388, 217—247.

Gregoire M., Moine B., Ney S., Cottin J., Giret A., 2000. Trace Element Residence and Partitioning in Mantle Xenoliths Metasomatized by Highly Alkaline, Silicate- and Carbonate-rich Melts (Kerguelen Islands, Indian Ocean). J. Petrology 41(4), 477—509.

Griffin W. L., O’Reilly S. Y., Natapov L. M., Ryan C. G., 2003. The evolution of lithospheric mantle beneath the Kalahari craton and its margins. Lithos 71, 215—241.

Harvey J., Yoshika M., Hammond S., Burton K., 2012. Deciphering the Trace Element Characteristics in Kilbourne Hole Peridotite Xenoliths: Melt Rock Interaction and Metasomatism beneath the Rio Grande Rift. J. Petrology 53(8), 1709—1742.

Jacob D., 2004. Nature and origin of eclogite xenoliths from kimberlites. Lithos (77), 295—316.

Ionov D., 2010. Petrology of Mantle Wedge Lithosphere: New Data on Supra-Subduction Zone Peridotite Xenoliths from the Andesitic Avacha Volcano, Kamchatka. J. Petrology 51(1-2), 327—361.

Ionov D., Hofmann A., Shimizu N., 1994. Metasomatism-induced Melting in Mantle Xenoliths from Mongolia. J. Petrology 35(3), 753—785.

Ishii T., Robinson P., Maekawa H., Fiske R., 2005. Petrological studies of Peridotites from Diapiric Serpentinite Seamounts in the Izu-Ogasawara-Mariana Forearcs, LEG 125. Proceedings of the Ocean Drilling Program, Scientific Results 125, 445—486.

Ishikawa A., Maruyama S., Komiya T., 2004. Layered Lithospheric Mantle Beneath the Ontong Java Plateau: Implications from Xenoliths in Alnooite, Malaita, Solomon Islands. J. Petrology 45(10), 2011—2044.

Kaczmarek M., 2007. Melt migration and deformation in the upper mantle: An example of the Lanzo peridotite massif (Western Alps, Italy). A dissertation submitted for the degree of Doctor as Sciences. Institut de Geologie et Hydrogeologie University de Neuchâtel.

Khodyrev O., 1996. Ultramafic Xenolith in Basalt of Shavaryn Tsaram Volcano, Gobi Plateau, as Continental Upper Mantle Material. Geochem. Int. 7, 551—554.

Lappin M., Smith D., 1978. Mantle-equilibrated Orthopyroxene Eclogite Pods from the Basal Gneisses in the Selje District, Western Norway. J. Petrology 19(3), 530—584.

Leander F., Becker K., Kramer W., Herzig P., 2002. Metasomatic Mantle Xenoliths from the Bismarck Microplate (Papua New Guinea) Thermal Evolution, Geochemistry and Extent of Slab-induced Metasomatism. J. Petrology 43(2), 315—343.

Litasov K., Litasov Yu., Malkovets V., 2005. Metasomatism and Transformations of the Upper Mantle beneath the Southern Baikal Territory: Evidence from Xenoliths of the Bartoy Volcanic Area. Geochem. Int. 3, 242—267.

Luhr J., Aranda-Gomez J., 1997. Mexican Peridotite Xenoliths and Tectonic Terranes: Correlations among Vent Location, Texture, Temperature, Pressure, and Oxygen Fugacity. J. Petrology 38(8), 1075—1112.

Lutkov V., Mogarovski V., Lutkova V., 2004. Geochemical Heterogeneity of the Upper Mantle Beneath the Central Asian Mobile Belt. Geochem. Int. 4, 309—320.

Morioka M., Kigoshi K., 1978. Lead isotopes in mantle derived xenoliths from Japan and South Africa. Geochem. J. 12, 223—228.

Müntener O., Hermann J., Trommsdorff V., 2000. Cooling History and Exhumation of Lower-Crustal Granulite and Upper Mantle (Malenco, Eastern Central Alps). J. Petrology 41(2), 175—200.

Neumann E., Wulff-Pedersen E., Pearson N., Spencer E., 2002. Mantle Xenoliths from Tenerife (Canary Islands): Evidence for Reactions between Mantle Peridotites and Silicic Carbonatite Melts inducing Ca Metasomatism. J. Petrology 43(5), 825—857.

Parkinson I. J., Pearce J. A.1998. Peridotites from the Izu—Bonin—Mariana Forearc (ODP Leg 125): Evidence for Mantle Melting and Melt-Mantle Interaction in a Supra-Subduction Zone Setting. J. Petrology 39(9), 1577—1618.

Peslier A., Francis D., Ludden J., 2002. The Lithospheric Mantle beneath Continental Margins: Melting and Melt-Rock Reaction in Canadian Cordillera Xenoliths. J. Petrology 43(11), 2013—2047.

Putirka K., Ryerson F., Perfit M., Ridley I., 2011. Mineralogy and Composition of the Oceanic Mantle. J. Petrology 52(2), 279—313.

Revillon S., Arndt N. T., Chauvel C., Hallot E., 2000. Geochemical Study of Ultramafic Volcanic and Plutonic Rocks from Gorgona Island, Colombia: the Plumbing System of an Oceanic Plateau. J. Petrology 41(7), 1127—1153.

Romer R. L., Rötzler J., 2001. P-T-t Evolution of Ultrahigh-Temperature Granulites from the Saxon Granulite Massif, Germany. Part II: Geochronology. J. Petrology 42(11), 2015—2032.

Savel’eva G. N., Bortnikov N. S., Peyve A. A., Skolotnev S. G., 2006. Ultramafic Rocks from the Markov Deep in the Rift Valley of the Mid-Atlantic Ridge. Geochem. Int. 11, 1105—1120.

Smith D., 2010. Antigorite Peridotite, Metaserpentinite, and other Inclusions within Diatremes on the Colorado Plateau, SW USA: Implications for the Mantle Wedge during Low-angle Subduction. J. Petrology 51(6), 1355—1379.

Shubina N., Ukhanov A., Genshaft Yu, Kolesov G., 1997. Trace and Major Elements in Peridotites beneath Northwestern Spitsbergen: a Contribution to the Problem of Mantle Heterogeneity. Geochem. Int. 1, 17—31.

Vinogradov A. P., Udintsev G. B., Dmitriev L. V., Kanaev V. F., Neprochnov Y. P., Petrova G. N., Ricunov L. N., 1969. The structure of the Mid-Oceanic rift zone of the Indian Ocean and its Place in the World Rift System. Tectonophysics 8, 377—401.

Volkova N. I., Tarasova E. N., Polyanskii N. V., Vladimirov A.G., Khomyakov V. D., 2008. High-Pressure Rocks in the Serpentinite Melange of the Chara Zone, Eastern Kazakhstan: Geochemistry, Petrology, and Age. Geochem. Int. 4, 386—401.

Wilkinson J., Le Maitre R., 1987. Upper Mantle Amphiboles and Micas and TiO2, K2O, and P2O5. Abundances and 100 Mg / (Mg + Fe2 + Ratios of Common Basalts and Andesites: Implications for Modal Mantle Metasomatism and Undepleted Mantle Compositions. J. Petrology 28(1), 37—73.

Xu X., O’Reilly S., Griffion W., Zhou X., 2000. Genesis of Young Lithospheric Mantle in Southeastern China: an LAM-ICPMS Trace Element Study. J. Petrology 41(1), 111—148.




DOI: https://doi.org/10.24028/gzh.0203-3100.v37i5.2015.111144

Refbacks

  • There are currently no refbacks.