Experimental study of dynamic deformation structuredmedium under the impulse loading

S. V. Mykulyak, V. O. Polyakovskiy


structured environment; stress-strain diagram; the impulse load; deformation


Bmgov A. M., Lomunov A. K., Demenko P. V., 2001. Study of physical and mechanical properties of soft soils at impact. Proceedings of the VI Zababakhin Scientific Talks. Snezhinsk, 21 p. (in Russian).

Vengrovich D. B., Gubar' I. N., Sheremet G. P., 2011. Study transformations dynamic load in an inhomogeneous granular medium. Switching processes in continuum mechanics. Proceedings of the IX Intern. Sci. Conf. Alushta, P. 94—97 (in Russian).

Danilenko V. A., Belinskij L V., Vengrovich D. B., Gr- zhibovskij V. V., Lemeshko V., 1996. Features wave processes in geophysical environment taking into account their structure. Dopovidi NAN Ukrainy (12), 124—129 (in Ukrainian).

Danilenko V A., Mikuljak S. V., 2008. Computer simulation of dynamic deformation of geophysical structured environment. Dopovidi NAN Ukrainy (6), 123—129 (in Ukrainian).

The study of rock mass methods photomechanics, 1982. (Ed. N. F. Kusova). Moscow: Nauka, 272 p. (in Russian).

Ljahov G. M., 1968. Determination of the viscous properties of the soil. Zhurnal prikladnoj mehaniki i tehnicheskoj fiziki (4), 68—71(in Russian).

Mikuljak S. V., 2007. Modelling of processes of dynamic deformation under the influence of a discrete medium pulse loading. Fizicheskaja mezomehanika 10(6), 69—74 (in Russian).

Rykov G. V., SkobeevA. M., 1978. Measurement of stresses in soils transient load. Moscow: Nauka, 168 p. (in Russian).

Bardenhagen S. G., Brackbill J. U., Sulsky D., 2000. Numerical study of stress distribution in sheared granular material in two dimensions. Phys. Rev. E. 62, 3882—3890.

Behringer R. P., Howell D., Kondica L., Tennakoona S., Veje C., 1999. Predictability and granular materials. Physica D 133, 1—17.

Blair D. L., Mueggenburg N. W., Marshall A. H., Jaeger H. M., Nagel S. R., 2001. Force distributions in three-dimensional granular assemblies: Effects of packing order and interparticle friction. Phys. Rev. E 63, 041304(1-8).

Cundal P A., Strack O. D. L., 1979. A discrete numerical model for granular assemblies. Geotechnique 29, 47—65.

Desrues J., Chambon R., Mokni M., Mazerolle F., 1996. Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Geotechnique 46(3), 529—546.

Fu Y, 2005. Experimental quantification and DEM simulation of micro-macro behaviors of granular materials using X-Ray tomography imaging. Louisiana State University, 251 p.

Herrmann H. J., Luding S., 1998. Modelling granular media on the computer. Continuum Mech. Therm. 10, 189—231.

Kruyt N. P., Antony S. J., 2007. Force, relative-displacement, and work networks in granular materials subjected to quasi-static deformation. Phys. Rev. E 75, 051308.

Losert W., Bosquet L., Lubensky T. C., Gollub J. P, 2000. Particle dynamics in shared granular matter. Phys. Rev. Lett. 85(7), 1428—1431.

Miller B, O'Hern C., Behringer R. P., 1996. Stress fluctuations for continuously sheared granular materials. Phys. Rev. Lett. 77(15), 3110—3113.

Mueth D. M., Jaeger H. M., Nagel S. R., 1998. Force distribution in a granular medium. Phys. Rev. E 57, 3164—3169.

Travers T, Ammi M., Bideau D., Gervois D., Messager J. -C., Troades J.-P., 1988. Mechanical size effects in 2d granular media. J. Phys. France 49, 939—948.

Vensrich C. M., Kisi E. H., Zhang J. F., 2012. Measurement and analysis of the stress distribution during die compaction using neutron diffraction. Granul. Matter 14(6), 671—680.

Zhou Y., Wildman R. D., Huntley J. M., 2010. Measurement of the mechanical properties of granular packs by wavelength-scanning interferometry. Proc. Roy. Soc. A 466, 789—808.

DOI: https://doi.org/10.24028/gzh.0203-3100.v36i2.2014.116125


  • There are currently no refbacks.