Periodization and specific features of deep processes in Precambrian by example of the Ukrainian shield

O.B. Usenko

Abstract


Thorough information on geological structure of the Ukrainian shield (USh) allows to verify opinions existing nowadays that plume and plate tectonic activities are possible only after conclusive formation of sublithospheric mantle 2,8—2,55 Ga and plume episodes of Precambrian occurred 2,75—2,7, 2,45—2,4, 1,9, 1.8—1,75, 1,65 Ga ago. It can be proved nowadays that formation of the crust occurred before 4.0 Ga and plume events result in later transformation of not only crust but also of mantle. Isotope dating of the USh allows allocating of plume episodes in close-range time. Nevertheless these limits for the USh in many cases have connection with geological processes, because not detrite zircons are dated but those ones included in rocks. Individual episodes are united into lasting plume events (activizations) up to 3,2, 3,2—2,8, 2,7—2,3, 2,3—1,65 Ga.

Special features of the structure of granite-greenstone area of the Middle Dnieper megablock of the USh support the opinion that before 2,7 Ga thick sub-continental lithosphere consisted of refractory peridotite did not exist. Crystallizable layer consists of relatively low-melt minerals and is enriched by basaltoid component. The thickness of crystallized layer reduces up to 100 and 50 km in case of addition of reheated deep matter and increases during crystallization up to 150—200 km. Asthenosphere compulsory contains the melt diluted by silicate-aqueous-carbonate fluide.

After 2,7 Ga subdivision of the area into two big blocks occurred. At the mark of the Archean and Proterozoic (2,5 Ga ago) the territory of Ukraine was subdivided into blocks and territories which spatially were drawn towards suture zones. The composition of the terrains allows supposing that at the mark of the Archean and Proterozoic exarticulation of tectonic units where plume processes went in different ways occurred.

The following plume event (2,3—2,65 Ga ago) was manifested as a stage of transformation of mantle and crust on all the cratons. In the structure of the USh obvious features of plate tectonic processes have been found. Movements maximal by amplitude occurred 2,0—1,8 Ga ago. During the process of this plume event abrupt change of composition of fluids and melts removed from the mantle occur. Granitization takes place with participation of aqueous chloride-potassium fluids. After granitization active dry carbonate-fluoride-sodium fluids became active. Removal of melts, fluids occurs by small portions and the regime of pulsating plume considerably specifies the composition of magmatic rocks and hydrothermal solutions.


Keywords


plume event, lithosphere-asthenosphere boundary, crust–mantle evolution, continental lithospheric mantle, banded iron formation, tonalite-trondhjemite-granodiorite formation, komatiite, anorthosites, аlkaline igneous rocks

References


Artemenko G. V., 1998. New geochronological data on the Sura greenstone structure. Mineralogicheskiy zhurnal 20(2), 74—81 (in Russian).

Belyatskiy B. V., Rodionov N. V., Antonov A. V., Sergeyev S. A., 2011. Zirkons with ages 3.98-3.63 billion years — indicators of processes in the oldest continental crust of the East Antarctic Shield (Enderby Land). Doklady RAN 438(4), 510—514 (in Russian).

Bobrov O. B., Stepanyuk L. M., Sergeyev S. A., Presnyakov S. L., 2008. Metatonalites of Dnipropetrovsk complex and age stages of their formation (geological position, composition, results of Shrimp radiology). Collection of scientific works of UkrDGRI (1), 9—24 (in Ukrainian).

Bogatikov O. A., Kovalenko V. I., Sharkov E. V., 2010. Magmatism, tectonics and geodyna¬mics of the Earth: Relationship in time and space. Moscow: Nauka, 606 p. (in Russian).

Bordunov I. N., 1983. Krivoy Rog-Kursk eugeosynclines. Kiev: Naukova Dumka, 304 p. (in Russian).

Venidiktov V. M., 1986. Polycyclic development of granulite facies. Kiev: Naukova Dumka, 267 p. (in Russian).

Verkhoglyad V. M., Skobelev V. M., 1995. Isotopic age subvolcanic district of Novograd Volyn (northwestern part of the Ukrainian shield). Geokhimiya i rudoobrazovaniye (is. 21), 47—56 (in Russian).

Geology of sedimentary-volcanogenic formations of the Ukrainian shield, 1967. Ed. N. P. Semenenko. Kiev: Naukova Dumka, 380 p. (in Russian).

Geological and geophysical model Golovanevsk suture zones of the Ukrainian Shield, 2008. Ed. A. V. Antsiferov. Donetsk: Weber, 308 p. (in Russian).

Geochronology Early Precambrian of the Ukrainian Shield. Archaea, 2005. Ed. N. Shcherbak. Kiev: Naukova Dumka, 244 p. (in Russian).

Geochronology Early Precambrian of the Ukrainian Shield. Proterozoic, 2008. Ed. N. Shcherbak. Kiev: Naukova Dumka, 240 p. (in Russian).

Gintov O. B., 2014. Scheme of faulting periodization in the Earth’s crust of the Ukrainian Shield — new data and consequences. Geofizicheskiy zhurnal 36(1), 3—18 (in Russian).

Deep structure, evolution and minerals of the Early Precambrian basement of the East European Platform: Interpretation of materials based on the 1-EB profile, profiles 4B and TATSEYS, 2010. Vol. 2. Ch. Ed. series A. F. Morozov. Moscow: GEOKART: GEOS, 400 p. (in Russian).

Entin V. A., Gintov O. B., Mychak S. V., Yushin A. F., 2015. The structure of the Moldovan iron ore deposit (Ukrainian shield) according geological and geophysical data and its possible endogenous nature. Geofizicheskiy zhurnal 37(4), 3—18 (in Russian).

Ferruginous-siliceous formations of the Precambrian of the European part of the USSR. The genesis of iron ores, 1991. Ed. V. M. Kravchenko, D. A. Kulik. Kiev: Naukova Dumka, 216 p. (in Russian).

Ferruginous-siliceous formations of the Ukrainian shield, 1978. Ed. N. P. Semenenko. Vol. 1. Kiev: Naukova Dumka, 328 p. (in Russian).

Kaulina T. V., 2010. Formation and transformation of zircon in polymetamorphic complexes. Apatity: Publ. House of the Kola Science Center of the Russian Academy of Sciences, 144 p. (in Russian).

Krivoy Rog superdeep well SG-8, 2011. Ed. E. M. Sheremet. Donetsk: Noulidzh, 555 р. (in Russian).

Kutas R. I., 2008. Thermal evolution and formation of the Precambrian earth's crust. Collection of scientific works: The evolution of Precambrian granitoids and associated minerals in connection with the Earth's energy and the stages of its tectonic-magmatic activation. Kyiv: UkrDGRI, P. 90—96 (in Russian).

Litasov K. D., Shatskiy A. F., 2016. Composition and structure of the core of the Earth Novosibirsk: Publ. SB RAS, 304 p. (in Russian).

Lobach-Zhuchenko S. B., 2014. Ancient cratons — age, structure, composition, geodynamics. Mineralogicheskiy zhurnal 36(2), 61—70 (in Russian).

Lobach-Zhuchenko S. B., Stepanyuk L. M., Ponomarenko A. N., Balaganskiy V. V., Sergeyev S. A., Presnyakov S. L., 2011. Age of zircons from the enderbite-gneisses of the Middle Bug River (the Dniester-Bug megablock of the Ukrainian shield). Mineralogicheskiy zhurnal 33(1), 3—14 (in Russian).

Lobach-Zhuchenko S. B., Balaganskiy V. V., Baltybaev Sh. K., Stepanyuk L. M., Ponomarenko A. N., Lokhov K. I., Koreshkova M. Yu., Yurchenko A. V, Yegorova Yu. S., Sukach V. V., Berezhnaya N. G., Bogomolov E. S., 2013. Stages of the Ust-Luga granulite complex formation from isotope-geochronological data (Middle Pobuzhye, Urkainskiy Shield). Mineralogicheskiy zhurnal 35(4), 86—98 (in Russian).

Lobkovskiy L. I., Nikishin A. M., Khain V. E., 2004. Modern problems of geotectonics and geodynamics. Moscow: Nauchnyy Mir, 611 р. (in Russian).

Metallic and nonmetallic minerals of Ukraine, 2005. Vol. 1. Metallic minerals. Ed. N. Shcherbak. Kiev-Lvov: Tsentr Yevropy, 785 p. (in Russian).

Orsa V. I., 1988. Granite formation in the Precambrian of the Middle Pridneprovsky granite-greenstone region. Kiev: Naukova Dumka, 202 p. (in Russian).

Pashkevich I. K., Bakarzhieva M. I., 2016. Mafic dykes of Ingul megablock (Ukrainian Shield): relationship of surface and deep structures of the lithosphere, fault tectonics and geodynamics. Geofizicheskiy zhurnal 38(5), 49—66 (in Russian).

Petrology and Geochemistry charnockitoids Ukrainian Shield, 2011. Ed. O. M. Ponomarenko. Kiev: Naukova Dumka, 216 p. (in Ukrainian).

Ponomarenko A. N., Stepanyuk L. M., Shumlyanskiy L. V., 2014. Geochronology and Geodynamics of the Paleoproterozoic of the Ukrainian Shield. Mineralogicheskiy zhurnal 36(2), 48—58 (in Russian).

Ryabchikov I. D., Kogarko L. N., 2016. Physicochemical parameters of the material of deep mantle plumes. Geologiya i geofizika 57(5), 874—888 (in Russian). doi: 10.15372/GiG20160504.

Semenenko N. P., 1990. Oxygen-hydrogen model of the Earth. Kiev: Naukova Dumka, 248 p. (in Russian).

Starostenko V. I., Lukin A. E., Tsvetkova T. A., Shymlanskaya L. A., 2014. Geofluids and up-to-date display of activization Ingul megablock Ukrainian Shield. Geofizicheskiy zhurnal 36(5), 2—25 (in Russian).

Stratigraphic sections of the Precambrian Ukrainian Shield, 1985. Ed. K. E. Esipchuk. Kiev: Naukova Dumka, 168 p. (in Russian).

Ultrabasitic formations of the central part of the Ukrainian shield, 1979. Ed. N. P. Semenenko. Kiev: Naukova Dumka, 412 p. (in Russian).

Usenko O. V., 2014. Forming Melts: geodynamic processes and physical and chemical interactions. Kiev: Naukova Dumka, 240 p. (in Russian).

Usenko O. V., 2017. Evolution of melts and fluids in the process of crust and mantle formation in paleoproterozoic (2,2—1,75 billion years ago). Stratigraphy and magmatism. Geofizicheskiy zhurnal 39(2), 56—95 (in Russian). doi: http://dx.doi.org/10.24028/gzh.0203-3100.v39i2.2017.97383.

Usenko O. V., 2016a. Evolution of melts and fluids as a reflection of the crust and mantle formation by the example of the Middle Dnieper megablock of the Ukrainian Shield. Archean. Geofizicheskiy zhurnal 38(2), 35—56 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v38i2.2016.107764.

Usenko O. V., 2016b. Evolution of melts and fluids during the crust and mantle formation in Neo-Archean—Paleo-Proterozoic. Stratigraphic effects. Geofizicheskiy zhurnal 38(6), 40—63 (in Russian). doi: https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91961.

Shatskiy V. S., Buzlukova L. V., Yagutts E., Kozmenko O. A., Mityukhin S. I., 2005. The structure and evolution of the lower crust of the Daldyn-Alakit district of the Yakut diamondiferous province (according to xenolith study data). Geologiya i geofizika 46(12), 1273—1289 (in Russian).

Shcherbakov I. B., 2005. Petrology of the Ukrainian shield. Lviv: ZuKTs, 366 p. (in Russian).

Yaroshchuk M. A., 1983. Iron-ore formations of the Belotserkov-Odessa metallogenic zone. Kiev: Naukova Dumka, 224 p. (in Russian).

Arndt N., Lesher C. M., 2004. Komatiite. In: Encyclopedia of Geology. Elsevier, P. 260—268.

Bekker A., Slack J. F., Planavsky N., Krapeћ B., Hofmann A., Konhauser K. O., Rouxel O. J., 2010. Iron formation: The sedimentary product of a complex interplay among mantle, tectonic, oceanic, and biospheric processes. Economic Geology 105(3), 467—508. doi:10.2113/gsecongeo.105.3.467.

Belousova E. A., Kostitsyn Y. A., Griffin W. L., Begg G. C., O’Reilly S. Y., Pearson N. J., 2010. The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119, 457—466. https://doi.org/10.1016/j.lithos.2010.07.024.

Boyd F. R., Pearson D. J., Hoal K. O., Hoal B. J., Nixon P. H., Kingston M. J., Mertzman S. A., 2004. Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos 77, 573—592. https://doi.org/10.1016/j.lithos.2004.03.010.

Campbell I. H., Griffiths R. W., 2014. Did the formation of D″ cause the Archaean–Proterozoic transition? Earth Planet. Sci. Lett. 388, 1—8. https://doi.org/10.1016/j.epsl.2013.11.048.

Carlson R. W., Pearson D. G., James D. E., 2005. Physical, chemical and chronological cha¬racteristics of continental mantle. Rev. Geophys. 43, RG1001, 1—24. http://dx.doi.org/10.1029/2004RG000156.

Cavosie A. J., Valley J. W., Wilde S. A., 2007. The oldest terrestrial mineral record: A review of 4400 to 4000 Ma detrital zircons from the Jack Hills, Western Australia. In: M. J. van Kranendonk, R. H. Smithies, V. C. Bennett (eds.) Earth’s Oldest Rocks: Developments in Precambrian Geology. Vol. 15. London: Elsevier, P. 91—111.

Сondie K. C., 2011. Earth and evolving planetary system. Elsеvier, 574 p.

Condie K. C., Davaille A., Aster R. C., Arndt N., 2015. Upstairs-downstairs: supercontinents and large igneous provinces, are they related? Int. Geol. Rev. 57, 1341—1348. http://dx.doi.org/10.1080/00206814.2014.963170.

Ernst R. E., Buchan K. L., 2003. Recognizing mantle plumes in the geological record. Ann. Rev. Earth Planet. Sci. 31, 469—523. https://doi.org/10.1146/annurev.earth.31.100901.145500.

Ernst W. G., Sleep N. H., Tsujimori T., 2016. Plate-tectonic evolution of the Earth: bottom-up and top-down mantle circulation. Can. J. Earth Sci. 53, 1103—1120. dx.doi.org/10.1139/cjes-2015-0126.

Glikson A. Y., 1993. Asteroids and early Precambrian crustal evolution. Earth Sci. Rev. 35, 285—319. doi: 10.1016/0012-8252(93)90041-5.

Green D. Н., Falloon T. J., Eggins S. M., Yaxley G. M., 2001. Primary magmas and mantle temperatures. Eur. J. Mineral. 13, 437—451. doi: 10.1127/0935-1221/2001/0013-0437.

Green D. Н., Hibberson W. О., Kovбcs I., Rosenthal А., 2010. Water and its influence on the lithosphere– asthenosphere boundary. Nature 467, 448—452. doi:10.1038/nature09369.

Griffin W., Belousova E., O’Neill C., O’Reilly S. Y., Malkovets V., Pearson N., Spetsius S., Wilde S., 2014. The world turns over: Hadean—Archean crust—mantle evolution. Lithos 189, 2—15. doi: 10.1016/j.lithos.2013.08.018.

Harrison T. M, Schmitt A. K., McCulloch M. T., Lovera O. M., 2008. Early (>4,5 Ga) Formation of Terrestrial Crust: Lu-Hf, 18O/16O, and Ti Thermometry Results for Hadean Zircons. Earth Planet. Sci. Lett. 268(3-4), 476—486. doi: 10.1016/j.epsl.2008.02.011.

Herzberg C., Asimow P. D., Arndt N., Niu Y., Lesher C. M., Fitton J. G., Cheadle M. J., Saunders A. D., 2007. Temperatures in ambient mantle and plumes: constraints from basalts, picrites and komatiites. Geochem. Geophys. Geosyst. 8(2), 1—34. doi:10.1029/2006GC001390.

Herzberg С., Rudnick R., 2012. Formation of cratonic lithosphere: An integrated thermal and petrological model. Lithos 149, 4—15. https://doi.org/10.1016/j.lithos.2012.01.010.

Hiess J., Bennett V. C., Nutman A. P., Williams I. S., 2009. In situ U-Pb, O and Hf isotopic compositions of zircon and olivine from Eoarchaean rocks, West Greenland: New insights to making old crust. Geochimica et Cosmochimica Acta 73, 4489—4516. doi:10.1016/j.gca.2009.04.019.

Hinrichs K. U., 2002. Microbial fixation of methane carbon at 2.7 Ga: Was an anaerobic mechanism possible? Geochem. Geophys. Geosyst. 3(7), 1—10. doi: 10.1029/2001GC000286.

Hofmann H. J., Grey K., Hickman A. H., Thorpe R. I., 1999. Origin of 3,45 Ga coniform stromatolites in Warrawoona Group, Western Australia. Geol. Soc. Am. Bull. 111, 1256—1262. doi: 10.1130/0016-7606(1999)111<1256:OOGCSI>2.3.CO;2.

Holden P., Lank P., Ireland T. R, Harrison T. M., Foster J. J., Bruce Z., 2009. Mass-spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: The first 100,000 grains. Int. J. Mass Spectrom. 206, 53—63. http: dx.doi.org/10.1016/j.ijms.2009.06.007.

Holland H. D., 2002. Volcanic gases, black smo¬kers, and the great oxidation event. Geochim. Cosmochim. Acta 66, 3811—3826.

Ionov D. A., Carlson R. W., Doucet L. S., Golovin A. V., Oleinikov О. B., 2015. The age and history of the lithospheric mantle of the Siberian craton: Re-Os and PGE study of peridotite xenoliths from the Obnazhennaya kimberlite. Earth Planet. Sci. Lett. 428, 108—119. doi: 10.1016/j.epsl.2015.07.007.

Isley A. E., Abbott D. H., 2002. Implication for the temporal distribution of high-Mg magmas for mantle plume volcanism through time. J. Geol. 110, 141—158.

Klein C., 2005. Some Precambrian banded iron formation (BIFs) from around the world: their age, geological setting, mineralogy, metamorphism, geochemistry and origin. American Mineralogist 90, 1473—1499. doi: 10.2138/am.2005.1871.

Koreshkova M. Yu., Downes H., Nikitina L. P., Vladykin N. V., Larionov A. N., Sergeev S. A., 2009. Trace element and age characteristics of zircons in granulite xenoliths from the Udachnaya kimberlite pipe, Siberia. Precambrian Res. 168, 197—212. https://doi.org/10.1016/j.precamres.2008.09.007.

Liu J., Riches A. J. V., Pearson G., Luo Y., Kienlen B., Kjarsgaard B. A., Stachel Th., Armstrong J. P., 2016. Age and evolution оf the deep Continental root beneath the central Rae craton, northern Canada. Precambrian Res. 272, 168—184. http://dx.doi.org/10.1016/j.precamres.2015.11.001

Liu D. Y., Nutman A. P., Compston W., Wu J. S., Shen Q. H., 1992. Remnants of 3800 Ma crust in the Chinese Part of the Sino-Korean craton. Geology 20, 339—342. doi: 10.1130/0091-7613(1992)020<0339:ROMCIT>2.3.CO;2

Lobach-Zhuchenko S. B., Balagansky V. V., Baltybaev Sh. K., Bibikova E. V., Chekulaev V. P., Yurchenko A. V., Arestova N. A., Artemenko G. V., Egorova Yu. S., Bogomolov E. S., Sergeev S. A., Skublov S. G., Presnyakov S. L., 2014. The Orekhov-Pavlograd zone, Ukrainian Shield: Milestones of its evolutionary history and constraints for tectonic models. Precambrian Res. 252, 71—87. doi: 10.1016/j.precamres.2014.06.027.

Maas R., Kinny P. D., Williams I. S., Froude D. O., Compston W., 1992. The Earth’s oldest known crust — a geochronological and geochemical study of 3900—4200 Ma old detrial zircons from Mt. Narryer and Jack Hills, Western Australia. Geochim. Cosmochim. Acta 56, 1281—1300. http: dx.doi.org/10.1016/0016-7037(92)90062-N.

Nebel O., Rapp R. P., Yaxley G. M., 2014. The role of detrital zircons in Hadean crustal research. Lithos 190-191, 313—327. doi: 10.1016/j.lithos.2013.12.010.

Nutman А. Р., Friend С., Bennett V. С., 2001. Review of the oldest (4400—3600 Ma) geological and mineralogical record: Glimpses of the beginning. Episodes 24(2), 93—101.

O’Neil J., Carlson R., Paquette J., Francis D., 2012. Formation age and metamorphic history of the Nuvvuagittuq Greenstone Belt. Precambrian Res. 220—221, 23—44. https://doi.org/10.1016/j.precamres.2012.07.009.

O’Reilly S. Y., Griffin W. L., 2010. The continental lithosphere-asthenosphere boundary: Can we sample it? Lithos 120, 1—13. doi:10.1016 j.lithos.2010.03.016.

Peterson T. D., Pehrsson S., Skulski T., Sandeman H., 2010. Compilation of Sm-Nd Isotope Analyses of Igneous Suites, Western Churchill Province. Geological Survey of Canada, Open File 6439. doi: 10.4095/285360.

Poller U., Gladkochub D., Donskaya T., Mazukabzov A., Sklyarov E., Todt W., 2005. Multistage magmatic and metamorphic evolution in the Southern Siberian Craton: Archean and Paleoproterozoic zircon ages revealed by SHRIMP and TIMS. Precambrian Res. 136, 353—368. doi: 10.1016/j.precamres.2004.12.003.

Presnal D. C., Gudfinnsson G. H., Walter M. G., 2002. Generation of mid-ocean ridge basalts at pressures from 1 to 7 GPa. Geochim. Cosmochim. Acta 66, 2073—2090. doi:10.1016/S0016-7037(02)00890-6.

Song B., Nutman A. P., Liu D., Wu J., 1996. 3800 to 2500 Ma crustal evolution in the Anshan area of Liaoning Province, northeastern China. Precambrian Res. 78, 79—94. https://doi.org/10.1016/0301-9268(95)00070-4.

Valley J. W., Peck W. H., King E. M., Wilde S. A., 2002. A cool early Earth. Geology 30, 351—354. doi: https://doi.org/10.1130/0091-7613(2002) 030<0351:ACEE>2.0.CO;2.

Walter M. J., 2005. Melt Extraction and Compositional Variability in Mantle Lithosphere. In: The Mantle and Core. Ed. R. W. Carlson. Oxford: Elsevier Ltd. P. 363—394.

Wyllie P. J., 1977. Effects of Н2О and СО2 on magma generation in the crust and mantle. J. Geol. Soc. 134, 215—234. https://doi.org/10.1144/gsjgs.134.2.0215.

Wyllie P. J., Ryabchikov I. D., 2000. Volatile components, magmas, and critical fluids in upwelling mantle. J. Petrol. 41(7), 1195—1205. https://doi.org/10.1093/petrology/41.7.1195.




DOI: https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116366

Refbacks

  • There are currently no refbacks.