Geometry and Cenozoic evolution of the Crimean fold-thrust belt from cross-section balancing and kinematic forward modeling

M. Nakapelyukh, V. Belskyi, L. Ratschbacher


The Crimean fold-thrust belt comprises the onshore Crimean-dome fold-thrust belt and the offshore Sorokin accretionary wedge, a sub-surface imbricate stack with high oil and gas potential. We combine geomorphological and balanced cross-section analyses with published low-temperature thermo¬chronology and offshore seismic data to constrain both its present geometry and Cenozoic structural evolution. We interpret the Crimean dome as a map-scale, ramp-related antiform above the Main Crimean thrust, the basal detachment to the onshore part of the fold-thrust belt. The Main Crimean thrust separates the continental Scythian plate from the transitional to oceanic Eastern Black-Sea basin and likely reactivates an Upper Triassic–Lower Jurassic passive continental margin structure. The Crimean fold-thrust belt has accommodated ~24 km shortening since the Eocene, with ~12 km contraction each in the thick-skinned Crimean dome and the thin-skinned Sorokin accretionary wedge. The intermediate geometries in the kinematic evolution traced by the kinematic forward model are testable by future hydrocarbon exploration and thermochronologic studies.


Crimean fold-thrust belt; thick-skinned versus thin-skinned structural geometries; balanced cross section; kinematic forward model

Full Text:



Afanasenkov A. P., Nikishin A. M., Obukhov A. N., 2007. Eastern Black Sea Basin: Geological Structure and Hydrocarbon Potential. Moscow: Nauchnyy Mir, 172 p. (in Russian).

Avdeev B., Niemi N., 2011. Rapid Pliocene exhumation of the central Greater Caucasus con¬strained by low-temperature thermochro¬nometry. Tectonics 30, TC2009. doi: 10.1029/2010TC002808.

Byerlee J., 1978. Friction of rocks. Pure Appl. Geophys. 116, 615—626.

Dahlen F. A., Suppe J., Davis D., 1984. Mechanics of fold-and-thrust belts and accretionary wedges: Cohesive Coulomb theory. J. Geophys. Res. 89, 10087—10101. doi: 10.1029/JB089iB12p10087.

Davis D., Suppe J., Dahlen F. A., 1983. Mechanics of fold-and-thrust belts and accretionary wedges. J. Geophys. Res. 88(B2), 1153—1172. doi: 10.1029/JB088iB02p01153.

Erslav E., 1991. Trishear fault-propagation folding. Geology 19, 617—620.

Favre E., 1877. Etude stratigraphique de la partie sud-ouest de la Crimeґe suivie de la description de quelques echinides de cette region par M. P. de Zeriel. Ed. H. Georg, Geneva. (in French).

Finetti I., Bricchi G., Del Ben A., Pipan M., Xuan Z., 1988. Geophysical study of the Black Sea. Boll. Geofis. Appl. 30, 197—324.

Foht K. K. (ed.), 1926. Geological map of the Crimea. 1:400000. Leningrad: Geological Committee.

Hardy S., Ford M., 1997. Numerical modeling of trishear fault propagation folding. Tectonics 16(5), 841—854.

Hurford A. J., 1998. Zeta: the Ultimate Solution to Fission-Track Analysis Calibration or Just an Interim Measure? In: van den Haute P., de Corte F. (eds). Advances in Fission-Track Geochronology. Solid Earth Sciences Library. Vol. 10. Springer, Dordrecht, 19—32.

Kazantsev Y. V., 1982. Tectonics of the Crimea. Moscow: Nauka, 112 p. (in Russian).

Khain V. Y. 1984. Regional Geotectonics. The Alpine Mediterranean Belt. Moscow: Nedra, 334 p. (in Russian).

Kral J., Gurbanov A., 1996. Apatite fission track data from the Great Caucasus pre-Alpine basement. Chem. Erde 56: 177—192.

Krijgsman W., Stoica M., Vasiliev I., Popov V. V., 2010. Rise and fall of the Paratethys Sea during the Messinian salinity crisis. Earth Planet. Sci. Lett. 290(1), 183—191. doi:10.1016/j.epsl.2009.12.020.

Kruglov S. S., Tsypko A. K. (eds.), 1988. Tectonics of Ukraine. Moscow: Nedra, 254 p. (in Russian).

Khriachtchevskaia O., Stovba S., Stephenson R., 2010. Cretaceous-Neogene tectonic evolution of the northern margin of the Black Sea from seismic reflection data and tectonic subsidence analysis. In: M. Sosson, N. Kaymakci, R. Stephenson, F. Bergerat, V. Starostenko (eds.). Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geol. Soc. London Spec. Publ. 340, 137—157.

Lysenko N. I., Janin B. T., 1979. Biostratigraphic characteristics of a typical section of the Upper Jurassic and Lower Cretaceous Central Crimea. Proceedings of the Academy of Science of the USSR 6, 70—80 (in Russian).

McClusky S., Balassanian S., Barka A., Demir C., Ergintav S., Georgiev I., Gurkan O., Hamburger M., Hurst K., Kahle H., Kastens K., Kekelidze G., King R., Kotzev V., Lenk O., Mahmoud S., Mishin A., Nadariya M., Ouzounis A., Paradissis D., Peter Y., Prilepin M., Reilinger R., Sanli I., Seeger H., Tealeb A., Toksцz M. N., Veis G., 2000. Global Positioning System constraints on plate kinematics and dynamics in the eastern Mediterranean and Caucasus. J. Geophys. Res. 105(B3), 5695—5719. doi: 10.1029/1999JB900351

Meijers M. J. M., Vrouwe B., 2010. Jurassic arc volcanism on Crimea (Ukraine): implications for the paleo-subduction zone configuration of the Black Sea region. Lithos 119, 412—426. doi: 10.1016/j.lithos.2010.07.017.

Mileev V. S., Baraboshkin E. Yu., Rozanov S. B., Rogov M. A., 2006. Cimmerian and Alpine tectonics of the Crimea mountains. Bulletin of the Moscow Society of Naturalists, Department of Geology 81, 22—33 (in Russian).

Munteanu I., Matenco L., Dinu C., Cloetingh S., 2011. Kinematics of back-arc inversion of the Western Black Sea Basin. Tectonics 30, TC5004. doi: 10.1029/2011TC002865.

Munteanu I., Willingshofer E., Sokoutis D., Matenco L., Dinu C., Cloetingh S., 2013. Transfer of deformation in back-arc basins with a laterally variable rheology: Constraints from analogue modelling of the Balkanides—Western Black Sea inversion. Tectonophysics 602, 223—236. doi: 10.1016/j.tecto.2013.03.009.

Muratov M. V., 1960. Brief outline of the geological structure of the Crimean peninsula. Moscow: State Scientific and Technical Publishing House of Literature on Geology and Conservation of Subsoil, 217 p. (in Russian).

Muratov M. V., Sydorenko A. V. (eds.), 1969. Geology of the USSR. Vol. 8. Geological Description. Crimea. Moscow: Nedra, 576 p. (in Russian).

Nikishin A. M., Korotaev M. V., Ershov A. V., Brunet M. F., 2003. The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modeling. Sediment. Geol. 156, 149—168. doi: 10.1016/S0037-0738(02)00286-5.

Nikishin A. M., Okay A. I., Tьysьz O., Demirer A., Amelin N., Petrov E., 2015a. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Mar. Petrol. Geol. 59, 638—655. doi: 10.1016/j.marpetgeo.2014.08.017.

Nikishin A. M., Okay A. I., Tьysьz O., Demirer A., Amelin N., Petrov E., 2015b. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Mar. Petrol. Geol. 59: 656—670. doi: 10.1016/j.marpetgeo.2014.08.018.

Nikishin A. M., Wannier M., Alekseev A. S., Almendinger O. A., Fokin P. A., Gabdullin R. R., Khudoley A. K., Kopaevich L. F., Mityukov A. V., Petrov E. I., Rubtsova E. V., 2015c. Mesozoic to recent geological history of southern Crimea and the Eastern Black Sea region. Geol. Soc. London Spec. Publ. 428. doi: 10.1144/SP428.1.

Nikishin A. M., Ziegler P. A., Panov D. I., Nazarevich B. P., Brunet M. F., Stephenson R. A., Bolotov S. N., Korotaev M. V., Tikhomirov P. I., 2001. Mesozoic and Cainozoic evolution of the Scythian Platform-Black Sea-Caucasus domain. In: Peri-Tethys Memoir 6: Peri-Tethyan Rift ⁄ Wrench Basins and Passive Margins. Paris: Mйmoires du Musйum national d’Histoire naturelle, 186, P. 295—346.

Oszczypko N., Slaczka A., Bubniak I., Olszewska B., Garecka M., 2017. The position and age of flysch deposits in the Cri mea Mountains (Southern Ukraine). Geological Quarterly 61(4), 697—722.

Pбnek T., Daniљнk M., Hradeckэ J., Frisch W., 2009. Morphotectonic evolution of the Crimean mountains (Ukraine) as constrained by apatite fission track data. Terra Nova 12(4), 271—278. doi: 10.1111/j.1365-3121.2009.00881.x.

Reilinger R., McClusky S., Vernant P., Lawren¬ce S., Ergintav S., Cakmak R., Ozener H., Gu¬li¬ev F. K. I., Stepanyan R., Nadariya M., Hahubia G., Mahmoud S., Sakr K., ArRajehi A., Paradissis D., Al-Aydrus A., Prilepin M., Guseva T., Evren E., Dmitrotsa A., Filikov S. V., Gomez F., Al-Ghazzi R., Karam G., 2006. GPS constraints on continental deformation in the Africa-Arabia-Eurasia continental collision zone and implications for the dynamics of plate interactions. J. Geophys. Res. 111, B05411. doi: 10.1029/2005JB004051.

Robinson A. G., Rudat J. H., Banks C. J., Wiles R. L. F., 1996. Petroleum geology of the Black Sea. Mar. Petrol. Geol. 13(2), 195—223.

Saintot A., Angelier J., Chorowicz J., 1999. Mechanical significance of structural patterns identified by remote sensing studies: a multiscale analysis of tectonic structures in Crimea. Tectonophysics 313(1-2), 187—218. doi: 10.1016/S0040-1951(99)00196-1.

Saintot A., Stephenson R. A., Stovba S., Brunet M. F., Yegorova T., Starostenko V., 2006. The evolution of the southern margin of eastern Europe (Eastern European and Scythian platforms) from the latest Precambrian-Early Palaeozoic to the Early Cretaceous. Geol. Soc. London. Memoirs 32, 481—505. doi. 10.1144/GSL.MEM.2006.032.01.30.

Schmid S. M., Bernoulli D., Fьgenschuh B., Matenco L., Schefer S., Schuster R., Tischler M., Ustaszewski K., 2008. The Alpine-Carpathian-Dinaridic orogenic system: correlation and evolution of tectonic units. Swiss J. Geosci. 101, 139—183. doi 10.1007/s00015-008-1247-3. Sheremet Y., Sosson M., Muller C., Gintov O., Murovskaya A., Yegorova T., 2016a. Key problems of stratigraphy in the Eastern Crimea Peninsula: some insights from new dating and structural data. Geol. Soc. London Spec. Publ. 428. doi: 10.1144/SP428.14.

Sheremet Y., Sosson M., Muller C., Gintov O., Murovskaya A., Yegorova T., 2016a. Key problems of stratigraphy in the Eastern Crimea Peninsula: some insights from new dating and structural data. Geol. Soc. London Spec. Publ. 428. doi: 10.1144/SP428.14.

Sheremet Y., Sosson M., Ratzov G., Sydorenko G., Voitsitskiy Z., Yegorova T., Gintov O., Murovskaya A., 2016b. An offshore-onland transect across the north-eastern Black Sea basin (Crimean margin): Evidence of Paleocene to Pliocene two-stage compression. Tectonophysics 688, 84—100. doi: 10.1016/j.tecto.2016.09.015.

Slavin V. I., 1989. Geological evolution of the Crimea in the Mesozoic. Bulletin of Moscow University. Ser. Geology (6), 24—36 (in Russian).

Smolyaninova E. I., Mikhailov V. O., Lyakhov¬sky V. A., 1996. Numerical modelling of regio¬nal neotectonic movements in the northern Black Sea. Tectonophysics 266(1-4), 221—231.

Solov’ev A. V., Rogov M. A., 2010. First fission-track dating of zircons from Mesozoic complexes of the Crimea. Stratigr. Geol. Correl. 18(3), 298—306.

Starostenko V., Janik T., Stephenson R., Gryn D., Rusakov O., Czuba W., Środa P., Grad M., Guterch A., Flьh E., Thybo H., 2016. DOBRE-2 WARR profile: the Earth’s upper crust across Crimea between the Azov Massif and the northeastern Black Sea. Geol. Soc. London Spec. Publ. 428(1), 199—220. doi: 10.1144/SP428.11.

Starostenko V., Janik T., Yegorova T., Farfuliak L., Czuba W., Środa P., Thybo H., Artemieva I., Sosson M., Volfman Y., Kolomiyets K., Lysynchuk D., Omelchenko V., Gryn D., Guterch A., Komminaho K., Legostaeva O., Tiira T., Tolkunov A., 2015. Seismic model of the crust and upper mantle in the Scythian platform: the DOBRE-5 profile across the north western Black Sea and the Crimean peninsula. Geophys. J. Int. 201(1), 406—428. doi: 10.1093/gji/ggv018.

Stephenson R. A., Mart Y., Okay A., Robertson A. H. F., Saintot A., Stovba S., Kriachtchevskaia O., 2004. Transect VIII: Eastern European Craton to Arabian Craton (Red Star to Red Sea). In: The TRANSMED Atlas — the Mediterranean Region from Crust to Mantle. Vol. XXIII. Berlin: Springer, 120—127.

Sydorenko G., Stephenson R., Yegorova T., Starostenko V., Tolkunov A., Janik T., Majdanski M., Voitsitskiy Z.., Rusakov O., Omelchenko V., 2016. Geological structure of the northern part of the Eastern Black Sea from regional seismic reflection data including the DOBRE-2 CDP profile. Geol. Soc. London Spec. Publ. 428, 307—321. doi: 10.1144/SP428.15.

Tchaikovsky B., Biletskyi S., Deev S., Demjan O., Krasnorudska S., 2006. Ukrainian State Geologic Map of L-36-XXVIII and L-36-XXXIV (1:200000 scale). Crimea region, State Geological Survey (in Ukrainian).

Vakarchuk S., Kharchenko M., Bezkhyzhko O., Shevchenko O., Kuzmenko P., Bashkirov G., Ishchenko I., Kitchka A., 2016. The discovery of the Subbotin oil field offshore Ukraine: Geological challenges and exploration lessons. Conference: Petroleum Systems of Alpine-Mediterranean Fold Belts and Basins, AAPG European Region Conference & Exhibition, At Bucharest 19—20 May, 2016, P. 32—33.

Vincent S. J., Carter A., Lavrishchev A., Price S. P., Barabadze T. G., Hovius N., 2010. The exhumation of the western Greater Caucasus: A thermochronometric study. Geol. Mag. 148(1), 1—21. doi: 10.1017/S0016756810000257.

Vincent S. J., Morton A. C., Carter A., Gibbs S., Barabadze T. G., 2007. Oligocene uplift of the wes¬tern Greater Caucasus: An effect of ini¬tial Arabia-Eurasia collision. Terra Nova 19(2), 160—166. doi: 10.1111/j.1365-3121.2007. 00731.x.

Yegorova T., Gobarenko V., 2010. Structure of the Earth’s crust and upper mantle of West and East Black Sea Basins revealed from geophysical data and its tectonic implications. In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Geol. Soc. London Spec. Publ. 340, 23—42. doi: 10.1144/SP340.3.



  • There are currently no refbacks.