Preliminary results of dating for the Lower Paleolitic sites of Ukraine (Medzhibozh 1 and Medzhibozh A, Khmelnitskii region) by electron spin resonance method

Authors

  • J. K. Qi RFK Science Research Institute, United States
  • B. A. B. Blackwell RFK Science Research Institute, Williams college, United States
  • I. K. Singh RFK Science Research Institute, United States
  • V. N. Stepanchuk Institute of Archeology, National Academy of Sciences of Ukraine, Ukraine
  • J. I. B. Blickstein RFK Science Research Institute, United States
  • J. A. Florentin RFK Science Research Institute, Williams college, United States
  • A. R. Skinner RFK Science Research Institute, Williams college, United States

DOI:

https://doi.org/10.24028/gzh.0203-3100.v40i4.2018.140614

Keywords:

ESR dating, Lower Paleolithic, Medzhibozh, Ukraine, ESR isochron analyses, Middle Pleistocene, Marine Isotope Stage (MIS) 11

Abstract

In the West of Ukraine, the Medzhibozh site complex includes two multi-layered open-air Lower Paleolithic sites sitting at 49°35′ N 27°42′ E, 270 m amsl. In Medzhibozh I’s lower alluvial cycle, Layer 16a yielded Paleolithic artefacts, mainly choppers, chopping tools, and flakes with little secondary modification, associated with likely fireplaces and bones with cutmarks left by early hominids inhabiting an ancient shoreline. Ursus deningeri, Stephanorhinus kirchbergensis, and other Middle Pleistocene fossils, as well as microtheriofauna, pollen, paleopedology data suggest that Layers 13—16 must predate 200 ka, but only one TL date has been done here.  About 500 m away from Medzhibozh I, Medzhibozh A’s six archaeological layers were intercalated with sterile gravels, with analogous stone products, fauna, hearth relics .  Since ESR can date mammalian enamel up to 2—4 Ma with 2—5 % precision, three cervid teeth from Layer 16a at Medzhibozh I and one from the Layer 1 in Medzhibozh A were dated by standard and isochron ESR. Sediment samples were analyzed by NAA to measure volumetrically averaged sedimentary dose rates. Using geological criteria, a ramped box model calculated time-averaged cosmic dose rates were determined. From Medzhibozh A, AT29’s standard LU age of 379±27 ka agreed best with ages estimated from the faunal analyses, but the isochron showed diffusional secondary U uptake, suggesting the age could be older. At Medzhibozh I, all teeth had >100 ppm U in their dentine, but enamel U ranged from 2,8 to 11,8 ppm. AT41’s isochron, which did not show secondary U uptake, suggested that the U uptake rate, p~4 was the best uptake rate, yielding an age of 373±17 ka, which correlates with late Marine Isotope Stage (MIS) 11. Meanwhile, AT44’s age likely dates at 399±11 ka with p=4, and AT45’s at 396±13 ka with p=6, both of which correlate with mid MIS 11. Their isochrons suggested secondary diffusional U uptake had affected both teeth. All isochron analyses suggest that one secondary uptake event may have affected the entire site, likely due to immersion in U-rich water. If correct, AT29’s age makes Medzhibozh A’s hearths the oldest in the Ukraine, but more teeth from all the layers must be ESR dated and tested with coupled ESR—230Th/234U to confirm the ages and p’s.

References

Dykan, N. I. (2014). First data on fossil ostracods (class Crustacea, subclass Ostracoda) from alluvial sediments of Deer excavation area of archaeological locality Medzhybizh 1. In V. N. Stepanchuk (Ed.), Medzhybizh locality and the problems of Lower Paleolithic studies on the East European Plain (pp. 83—88). Ternopil: OOO “Terno-graph” (in Ukrainian).

Matviyishina, Zh. M., & Karmazinenko, S. P. (2014). Results of paleopedological studying of Quaternary deposits of Medzhibozh Paleolithic locality. In V. N. Stepanchuk (Ed.), Medzhybizh locality and the problems of Lower Paleolithic studies on the East European Plain (pp. 49—69). Ternopil: OOO “Terno-graph” (in Ukrainian).

Piasetsky, V. K. (2001). The Middle-Acheldom location Medzhibozh. Vita Antiqua, (3-4), 125—134 (in Russian).

Rekovets, L. I. (2001). Medzhibozh — the teriofauna location and the multilayered Paleolithic site of a man in Ukraine. Vestnik zoologii, 35(6), 39—44 (in Russian).

Rekovets, L. I., Socha, P., Stepanchuk, V. N., Kovalchuk, A. N., & Demeshkant, V. I. (2014). Reconstruction of existence conditions of theriofauna and ancient man during the Likhvin epoch at the Medzhybizh locality in Ukraine. In V. N. Stepanchuk (Ed.), Medzhybizh locality and the problems of Lower Paleolithic studies on the East European Plain (pp. 70—78). Ternopil: OOO “Terno-graph” (in Ukrainian).

Stepanchuk, V. N., Ryzhov, S. N., Matviyishina, Zh. N., Karmazinenko, S. P., & Moigne, A. M. (2014). First results of investigation of Medzhibozh Lower Paleolithic localities. In V. N. Stepanchuk (Ed.), Medzhybizh locality and the problems of Lower Paleolithic studies on the East European Plain (pp. 22—48). Ternopil: OOO “Terno-graph” (in Russian).

Barabas, M., Walther, R., Wieser, A., Radtke, U., & Grün, R. (1993). Second interlaboratory-comparison project on ESR dating. Applied Radiation and Isotopes, 44, 119—129. https://doi.org/10.1016/0969-8043(93)90206-P.

Blackwell, B. A. B. (2006). Electron spin resonance (ESR) dating in karst environments. Acta Carsologica, 35, 123—153. doi: https://doi.org/10.3986/ac.v35i2-3.236.

Blackwell, B. A. B. (2001). Electron spin resonance (ESR) dating in lacustrine environments. In W. M. Last, J. P. Smol (Eds.), Tracking environmental change using lake sediments (pp. 283—369). Springer Netherlands.

Blackwell, B. A. (1989). Laboratory Procedures for ESR Dating of Tooth Enamel. McMaster University Department of Geology Technical Memo.

Blackwell, B. A. (1994). Problems associated with reworked teeth in electron spin resonance (ESR) dating. Quaternary Geochronology (Quaternary Science Reviews), 13, 651—660.

Blackwell, B. A. B., & Blickstein, J. I. B. (2000). Considering sedimentary U uptake in external dose rate determinations for ESR and luminescent dating. Quaternary International, 68(1), 329—343. doi: 10.1016/S1040-6182(00)00056-2.

Blackwell, B. A., & Schwarcz, H. P. (1993). ESR isochron dating for teeth: A brief demonstration in solving the external dose calculation problem. Applied Radiation & Isotopes, 44(1-2), 243—252. https://doi.org/10.1016/0969-8043(93)90227-2.

Blackwell, B. A. B., Skinner, A. R., & Blickstein, J. I. B. (2001). ESR isochron exercises: how accurately do modern dose rate measurements reflect paleodose rates? Quaternary Science Reviews, 20(5-9), 1031—1039. doi: 10.1016/S0277-3791(00)00081-0.

Blackwell, B. A. B., Skinner, A. R., Brassard, P., & Blickstein, J. I. B. (2002). U Uptake in tooth enamel: Lessons from isochron analyses and laboratory simulation experiments. Proceedings of the International Symposium on New Prospects in ESR Dosimetry and Dating. Society of ESR Applied Metrology, Osaka. Advances in ESR Applications, 18, 97—118.

Blackwell, B. A. B., Liang, S., Golovanova, L. V., Doronichev, V. B., Skinner, A. R., & Blickstein, J. I. (2005). ESR at Treugol’naya Cave, northern Caucasus Mt., Russia: Dating Russia’s oldest archaeological site and paleoclimatic change in Oxygen Isotope Stage 11. Applied Radiation & Isotopes, 62(2), 237—245. doi:10.1016/j.apradiso.2004.08.005.

Blackwell, B. A. B., Skinner, A. R., Blickstein, J. I. B., Montoya, A. C., Florentin, J. A., Baboumian, S. M., Ahmed, I. J., & Deely, A. E. (2016a). ESR in the 21st century: From buried valleys and deserts to the deep ocean and tectonic uplift. Earth Science Reviews, 158, 125—159. https://doi.org/10.1016/j.earscirev.2016.01.001.

Blackwell, B. A. B., Kim, D. M. K., Curry, B. B., Grimley, D. A., Blickstein, J. I. B., & Skinner, A. R. (2016b). Shell we date? ESR dating Sangamon Interglacial Episode deposits at Hopwood Farm, IL. Radiation Protection Dosimetry, 172(1-3), 283—295. https://doi.org/10.1093/rpd/ncw213.

Blackwell, B. A. B., Sakhrani, N., Gopalkrishna, K. K., Singh, I., Harvati, K., Tourloukis, V., … Skinner, A. R. (2018). ESR dating ungulate teeth and molluscs from Marathousa 1, Greece. Quaternary International.

Brennan, B. J., Rink, W. J., McGuirl, E. L., & Schwarcz, H. P. (1997). Beta doses in tooth enamel by «one group» theory and the Rosy dating software. Radiation Measurements, 27, 307—314.

Deely, A. E., Blackwell, B. A. B., Mylroie, J. E., Carew, J. L., Blickstein, J. I. B., Skinner, A. R. (2011). Testing cosmic dose rate models for ESR: dating corals and molluscs on San Salvador, Bahamas. Radiation Measurements, 46(9), 853—859. https://doi.org/10.1016/j.radmeas.2011.02.008.

Dibble, H. L., Aldaeias, V., Alvarez-Fernández, E., Hallett-Desguez, E., Jacobs, Z., Olszewski, D. I., … El-Hajraoui, M. (2012). New Excavations at the Site of Contrebandiers Cave, Morocco. Paleoanthropology, 2012, 145—201. doi:10.4207/PA.2012.ART74.

Dibble, H. L., Aldaeias, V., Jacobs, Z., Olszewski, D. I., Rezek, Z., Lin, S. C., … El-Hajraoui, M. (2013). On the industrial attributions of the Aterian and Mousterian of the Maghreb. Journal of Human Evolution 64, 194—210. http://dx.doi.org/10.1016/j.jhevol.2012.10.010.

Dimitrijević, V., Mrdjić, N., Korać, M., Chu, S., Kostić, D., Jovičić, M., & Blackwell, B. A. B. (2015). The latest steppe mammoths (Mammuthus trogontherii (Pohlig)) and associated fauna on the Late Middle Pleistocene steppe at Nosak, Kostolac Basin, Northeastern Serbia. Quaternary International, 379, 14—27. https://doi.org/10.1016/j.quaint.2015.06.025.

Dmytruk, Y., & Stepanchuk, V. (2017). Pedo-geochemical assessment of a Holsteinian occupation site. In D. Dent & Y. Dmytruk (Eds.), Soil science working for a living: Applications of soil science to present-day problems. Springer Nature.

Doronichev, V. (2016). The Pre-Mousterian industrial complex in Europe between 400 and 300 ka: Interpreting its origin and spatiotemporal variability. Quaternary International, 409, 222—240. https://doi.org/10.1016/j.quaint.2015.05.063.

Kahlke, R. D., & Kaiser, T. M. (2011). Generalism as a subsistence strategy: advantages and limitations of the highly flexible feeding traits of Pleistocene Stephanorhinus hundsheimensis (Rhinocerotidae, Mammalia). Quaternary Science Reviews, 30, 2250—2261. doi:10.1016/j.quascirev.2009.12.012.

Lee, H. K., Rink, W. J., & Schwarcz, H. P. (1997). Comparison of ESR signal dose-responses in modern and fossil tooth enamels. Radiation Measurements, 27(2), 405—411. https://doi.org/10.1016/S1350-4487(96)00112-6.

Mishra, S., White, M. J., Beaumont, P., Antoine, P., Bridgland, D. R., Limondin-Lozouet, N., … White, T. S. (2007). Fluvial deposits as an archive of early human activity. Quaternary Science Reviews, 26(22-24), 2996—3016. http://dx.doi.org/10.1016/j.quascirev.2007.06.035.

Moigne, A. M., Stepanchuk, V. N., & Rizhov, S. (2014). MIS 11-9 locality of Medzhibozh, Ukraine: Archeological and paleozoological evidence. Abstracts of the XVII World UISPP Congress 2014 in Burgos.

Rekovets, L., Chepalyga, A., & Povodyrenko, V. (2007). Geology and mammalian fauna of the Middle Pleistocene site, Medzhybozh, Ukraine. Quaternary International, 160(1), 70—80. doi: 10.1016/j.quaint.2006.09.014.

Roebroeks, W., & Villa, P. (2011). On the earliest evidence for habitual use of fire in Europe. Proceedings of the National Academy of Sciences.

Shimelmitz, R., Kuhn, S. L., Jelinek, A. J., Ronen, A., Clark, A. E., & Weinstein-Evron, M. (2014). ‘Fire at will’: The emergence of habitual fire use 350,000 years ago. Journal of Human Evolution, 77, 196—203. doi: 10.1016/j.jhevol.2014.07.005.

Skinner, A. R., Blackwell, B. A. B., Chasteen, D. E., Shao, J. M., & Min, S. S. (2000). Improvements in dating tooth enamel by ESR. Applied Radiation and Isotopes, 52(5), 1337—1344. https://doi.org/10.1016/S0969-8043(00)00092-0.

Skinner, A. R., Blackwell, B. A. B., Chasteen, D. E., & Shao, J. M. (2001a). Q band ESR studies of

fossil tooth enamel. Quaternary Science Reviews, 20(5-9), 1027—1030. https://doi.org/10.1016/ S0277-3791(00)00066-4.

Skinner, A. R., Blackwell, B. A. B., & Lothian V. (2001b). Calibrating ESR ages in the 2-Ma range at Olduvai Gorge, Tanzania. Paleoanthropology Society, Kansas City, MO. Journal of Human Evolution, 40(3), A22.

Stepanchuk, V. N. (2009). Medzhibozh, Ukraine. Early Middle Pleistocene evidence of human dispersal in the east European plain. In A. P. Derevianko, M. V. Shunkov (Eds.), The earliest human migrations in Eurasia. Makhachkala: Institute of Archaeology and Ethnography Press.

Stepanchuk, V. N. (2013). Studies of Lower Palaeolithic sites in Medzhibozh. In M. Ya-

mada (Ed.) Archaeological and Geological Researches in Ukraine (pp. 27—38). Cen-

ter for Obsidian and Lithic Studies, Nagano.

Stepanchuk, V. N., & Moigne, A. M. (2016). MIS 11-locality of Medzhibozh, Ukraine: Archaeological and paleozoological evidence. Quaternary International, 409, 241—254. https://doi.org/10.1016/j.quaint.2015.09.050.

Stepanchuk, V. N., Ryzhov, S., Rekovets, L., & Matviishina, Z. N. (2010). The Lower Paleolithic of Ukraine: Current evidence. Quaternary International, 223—224, 131—142. https://doi.org/10.1016/j.quaint.2009.12.006.

Wieser, A., Debuyst, R., Fattibene, P., Meghifene, A., Onori, S., Bayankin, S. N., Blackwell, B. A. B., … Trompier, F. (2005). The 3rd international intercomparison on EPR tooth dosimetry: Part 1, general analysis. Applied Radiation and Isotopes, 62(2), 163—171. https://doi.org/10.1016/j.apradiso.2004.08.027.

Published

2018-08-28

How to Cite

Qi, J. K., Blackwell, B. A. B., Singh, I. K., Stepanchuk, V. N., Blickstein, J. I. B., Florentin, J. A., & Skinner, A. R. (2018). Preliminary results of dating for the Lower Paleolitic sites of Ukraine (Medzhibozh 1 and Medzhibozh A, Khmelnitskii region) by electron spin resonance method. Geofizicheskiy Zhurnal, 40(4), 155–177. https://doi.org/10.24028/gzh.0203-3100.v40i4.2018.140614

Issue

Section

Articles