DOI: https://doi.org/10.24028/gzh.0203-3100.v40i5.2018.147471

S. I. Subbotin Institute of geophysics of NAS of Ukraine on the occasion of centenaries of the Academy and its President Boris Yevgeniyevich Paton

V. I. Starostenko, A. V. Kendzera, O. V. Legostaeva

Abstract


The essential results of the Institute’s activity during five latest years, i. e., after 2013 have been briefly presented. The following categories have been outlined: studies of the magnetic field of the Earth and application of their results for solving geologic-geophysical, ecological and practical problems; seismology and seismic security; deep structure of the Earth’s crust and upper mantle, tectonics, geodynamics, tectonophysics, mineral resources; new technologies of investigation of near-surface, technogenic and natural rocks; adaptive seismic exploration; preparation of highly qualified specialists and the work with higher educational institutions are the principal items characterizing the activity of “Geophysical Journal” that was included to International Scientometric base Web of Sciences Core Collection.

Elaboration and creation of principally new perspective logistic complexes for well-logging, seismic exploration and seismological works provide the executed studies with new high-grade experimental material.

All specified is directed to solving the problems of search and exploration of mineral resources, seismic security of population and industry and ecological problems of the country.


Keywords


magnetic field of the Earth; seismology and exploration seismology; and deep structure of the crust and upper mantle; tectonics; geodynamics; tectonophysics; mineral deposits; creation of new equipment; preparation of specialists; international conferences; publishing

References


Actual problems of geoenvironment and probing systems: Materials of the 3rd International Scientific Conference. Institute of Geophysics of the National Academy of Sciences of Ukraine. Kyiv, 3—5 October 2017 (in Ukrainian).

Aryasova, A. V. (2016). Geodynamic processes in the lithosphere and kimberlite mechanism: Extended abstract of Doctor’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Aryasova, O. V., & Khazan, Ya. M. (2013a). Interaction of mantle convection with the lithosphere and the origin of kimberlites. Geofizicheskiy zhurnal, 35(5), 248—265. https://doi.org/10.24028/gzh.0203-3100.v35i5.2013.116445 (in Russian).

Aryasova, O. V., & Khazan, Ya. M. (2013b) “Clifford’s Rule” and the geodynamics of kimberlite magmatism. Geofizicheskiy zhurnal, 35(6), 102—115. https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116453 (in Russian).

Aryasova, O. V., & Khazan, Ya. M. (2013c). Maximum depth of xenoliths taken out by kimberlites and a thermal state of the lithosphere. Dopovidi NAN Ukrainy, (3), 95—101 (in Russian).

Bakhmutov, V. G., & Hlavatskyi, D. V. (2014). Identification of the Matuyama-Brunhes boundary by paleomagnetic studies of the Roxolany profile (Western Black Sea region). Dopovidi NAN Ukrainy, (10), 92—98. https://doi.org/10.15407/dopovidi2014.10.092 (in Russian).

Bakhmutov, V. G., & Glavatskiy, D. V. (2016). Problems of magnetostratigraphy of Pleistocene loess-soil deposits of the South of Ukraine. Geofizicheskiy zhurnal, 38(4), 59—75. doi: https://doi.org/10.24028/gzh.0203-3100.v38i4.2016.107801 (in Russian).

Bakhmutov, V. G., Martazinova, V. F., Kilifarska, N. A., Melnyk, G. V., & Ivanova, E. K. (2014). Geomagnetic field and climate variability. 1. Spatial-temporal distribution of geomagnetic field and climatic parameters during XX century. Geofizicheskiy zhurnal, 36(1), 81—104. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116153 (in Russian).

Bakhmutov, V. G., Tretyak, K. R., Maksimchuk, V. Yu., Glotov, V. M., Grek, R. Kh., Yegorova, T. P., & ... Pronenko, V. A. (2017). Structure and dynamics of geophysical fields in the Western An-tarctic. Lviv: Publ. House of Lviv Polytechnic (in Ukrainian).

Belyi, T. A. (2013). The formation of a stratification of clouds by the electric field of the atmosphere. Dopovidi NAN Ukrainy, (2), 82—86 (in Russian).

Bilyy, T. A. (2018). The influence of the Earth’s electric field on the electrical and microphysical processes in the atmosphere: Extended abstract of Doctor’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Blokh, Yu. I. (2018). German Patriarchs of Geomagnetology. http://www.igph.kiev.ua/Publications/ukr/articles/Yu.I.Blokh.pdf (in Russian).

Bondarenko, Ì. S. (2013). New technologies of geophysical borehole researches of oil and gas reservoirs and technogenic geological ob-jects. Visnyk NAN Ukrainy, (2), 66—72 (in Ukrainian).

Bondarenko, M. S., Dokka, A. M., Shulga, R. V. Kulik, V. V. (2014). Complex interpretation of the results of radioactive logging of methane-coal sections. Certificate of registration No. 57929 dated December 29, 2014 (in Ukrainian).

Bondarenko, M., & Kulyk, V. (2015a). Determination of porosity and gas saturation factor of reservoirs in accordance with PT-conditions of occurrence. Visnyk KNU. Geolohiya, (2), 59—63 (in Ukrainian).

Bondarenko, M. S., Kulik, V. V. (2015b). Method of determination of parameters of density of sandy-argillaceous rocks by complex of radioactive logging. Patent for utility model No. 95931 dated. 12/01/2015 (in Ukrainian).

Burakhovich, T. K., & Kobolev, V. P. (2017). Actual problems of geo-environment and sounding systems. Geofizicheskiy zhurnal, 39(6), 139—143. https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116946 (in Russian).

Burakhovich, T. K., Kushnir, A. M., Tsvetkova, T. A., & Shumlyanskaya, L. A. (2013). Complex interpretation of seismotomographic and geoelectrical models for the estimation of geodynamic processes in the Crimean lithosphere. In Scientific works of UkrNIIM NAS of Ukraine (is. 13, pp. 12—26). Donetsk (in Ukrainian).

Burakhovich, T. K., Nikolaev, I. Yu., Sheremet, Ye. M., & Shirkov, B. I. (2015). Geoelectric anomalies of the Ukrainian Shield and their relation to mineral deposits. Geofizicheskiy zhurnal, 37(6), 42—63. https://doi.org/10.24028/gzh.0203-3100.v37i6.2015.111171 (in Russian).

Burakhovych, T. K., & Usenko, O. V. (2013). Conductivity anomalies in the zones of anartozit and alkaline magmatism on the Ukrainian Shield. Geodynamika, (2), 109—111 (in Russian).

Verbitsky, S., Stasyuk, A., & Shchepilo, A. (2004). Seismic station “Lviv“ ― 105 years. Zeleni Karpaty, (1-2), 46—47 (in Ukrainian).

Verbitsky, Yu. T. (2013). Methodical and applied aspects of the complex bank of geophysical information of the Carpathian region: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Verpahovskaya, A. O., Pilipenko, V. N., & Kobolev, V. P. (2013). Features of processing of marine seismic observations using finite-difference full-wave migration. Geofizicheskiy zhurnal, 35(5), 187—195. https://doi.org/10. 24028/gzh.0203-3100.v35i5.2013.116447 (in Russian).

Verpahovskaya, A. O., Pilipenko, V. N., & Pylypenko, Å. V. (2017). Formation geological depth image according to refraction and reflection marine seismic data. Geofizicheskiy zhurnal, 39(6), 106—121. https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116375 (in Russian).

Verpakhovska, O. O. (2016). The formation of a deep image of the medium with the use of finite-difference migration according to the data of the regional seismic survey: Extended abstract of Doctor’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Gvishiani, A. D., Soloviev, A. A., Starostenko, V. I., Sumaruk, Yu. P., & Legostaeva, O. V. (2015). A decrease in solar and geomagnetic activity from cycle 19 to cycle 24. Geomagnetizm i aeronomiya, 55(3), 299—306. doi: 10.7868/S0016794015030098 (in Russian).

Gintov, O. B. (2017). Temporal sequence of geodynamic development processes in the territory of Ukraine from the Eoarchean to Anthropogen. Geofizicheskiy zhurnal, 39(1), 17—40. https://doi.org/10.24028/gzh.0203-3100.v 39i1.2017.94009 (in Russian).

Gintov, O. B. (2015). Problems of geodynamics of the Ukrainian Shield in Precambrian. Geofizicheskiy zhurnal, 37(5), 3—22. https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.94009 (in Russian).

Gintov, O. B., Yegorova, T. P., Tsvetkova, T. A., Bugaenko, I. V., & Murovskaya, A. V. (2014). Geodynamic features of joint zone of the Eurasian plate and the Alpine-Himalayan belt within the limits of Ukraine and adjacent areas. Geofizicheskiy zhurnal, 36(5), 26—63. https://doi.org/10.24028/gzh.0203-3100.v36i5.2014.111568 (in Russian).

Gintov, O. B., Murovskaya, A. V., Yegorova, T. P., Volfman, Yu. M., Tsvetkova, T. A., Bugaenko, I. V., ... Amashukeli T. A. (2015). Deep seismogenic zone Vrancea as an indicator of geodynamic processes. Geofizicheskiy zhurnal, 37(3), 22—49. https://doi.org/10.24028/gzh.0203-3100.v36i5.2014.111568 (in Russian).

Gintov, O. B., & Shevchuk, V. V. (2017). Structuredness of the Ukrainian Shield and features of Early Precambrian rift formation on the example of the Golovanevskaya suture zone. Kiev: LLC “NPP Interservis” (in Ukrainian).

Glavatsky, D. V. (2017). Petromagnetism and magnetostratigraphy of quaternary loess-soil deposits of Ukraine: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Gobarenko, V. S., Murovskaya, A. V., Yegorova, T. P., & Sheremet, E. E. (2016). Collision processes at the northern margin of the Black Sea. Geotectonics, 50(4), 407—424. doi: 10.1134/S0016852116040026 (in Russian).

Gonchar, V. V. (2017). Vertical tectonic movements and sedimentary filling of basins during syn-rift and post-rift stages of lithosphere development. Geofizicheskiy zhurnal, 39(2), 22—55. https://doi.org/10.24028/gzh.0203-3100.v39i2.2017.97351 (in Russian).

Gordienko, V. V. (2013a). Deep processes and gold-sulfide mineralization. Geofizicheskiy zhurnal, 35(4), 40—50. https://doi.org/10. 24028/gzh.0203-3100.v35i4.2013.111391 (in Russian).

Gordienko, V. V. (2013b). Deep processes and indigenous diamond deposits. Geofizicheskiy zhurnal, 35(3), 70—83. https://doi.org/10.24028/gzh.0203-3100.v35i3.2013.116395 (in Russian).

Gordienko, V. V. (2014a). Deep processes and primary deposit of diamonds. Electronic Journal “Deep Oil”, 2(4), 577—590. http://journal.deepoil.ru/images/stories/docs/DO-2-4-2014/5_Gordienko_2-4-2014.pdf (in Russian).

Gordienko, V. V. (2014b). Deep processes and seismic activity. Geofizicheskiy zhurnal, 36(1), 19—42. https://doi.org/10.24028/gzh.0203-3100.v36i1.2014.116147 (in Russian).

Gordienko, V. V. (2014c). Criticism of plate tectonics hypothesis. Electronic Journal “Deep Oil”, 2(3), 413—442. http://journal.deepoil.ru/images/stories/docs/DO-2-3-2014/6_Gordienko_2-3-2014.pdf (in Russian).

Gordienko, V. V. (2013c). On the plate tectonics hypothesis. Geofizicheskiy zhurnal, 35(6), 72—90. https://doi.org/10.24028/gzh.0203-3100.v35i6.2013.116451 (in Russian).

Gordienko, V. V. (2018). On the motion of lithospheric plates in the oceans and transition zones. Geofizicheskiy zhurnal, 40(3), 129—144. https://doi.org/10.24028/gzh.0203-3100.v40i3. 2018.137181 (in Russian).

Gordienko, V. V. (2013d). Recent activization and hydrocarbon deposits. Electronic Journal “Deep Oil”, 1(11), 1688—1710. http://journal.deepoil.ru/images/stories/docs/DO-1-11-2013/3_Gordienko_1-11-2013.pdf (in Russian).

Gordienko, V. V., Gordienko, I. V., & Zavgorodnyaya, O. V. (2014a). Geothermal resources of Uukraine. Electronic Journal “Deep Oil”, 2(9), 1418—1433. http://journal.deepoil.ru/images/stories/docs/DO-2-9-2014/3_Gordienko-Gordienko-Zavgorodnjaja_2-9-2014.pdf (in Russian).

Gordienko, V., Gordienko, I., & Zavgorodnyaya, O. (2016). Thermal field and geoenergetic resources of Ukraine. Saarbrücken: LAP Lambert Academic Publishing (in Russian).

Gordienko, V., Gordienko, L., & Zavgorodnyaya, O. (2015). Thermal field of the Donbas. Geofizicheskiy zhurnal, 37(6), 3—23. https://doi.org/10.24028/gzh.0203-3100.v37i6.2015. 111169 (in Russian).

Gordienko, V. V., Gordienko, I. V., & Zavgorodnyaya, O. V. (2014b). Heat field of the north-west part of the Dnieper basin of the Dnieper-Donets depression. Dopovidi NAN Ukrainy, (2), 97—103 (in Russian).

Gordienko, V. V., Gordienko, I. V., Zavgorodnyaya, O. V., Logvinov, I. M., & Tarasov, V. N. (2014ñ). Recent activization and hydrocarbon deposits of Precarpatian basin. Electronic Journal “Deep Oil”, 2(7), 1083—1097. http://journal.deepoil.ru/images/stories/docs/DO-2-7-2014/5_Gordienko-Gordienko-Zavgorodnjaja-Logvinov-Tarasov_2-7-2014.pdf (in Russian).

DBN B.1.1-12:2014. (2014). Construction in seismic regions of Ukraine. Kyiv: Minregionstroy of Ukraine, Ukrahrbudinform (in Ukrainian).

Drukarenko, V. V. (2017). Magnetic susceptibility of the rocks of the sedimentary cover and oil and gas content of the Chernigov segment of the Dnieper-Donets aulacogene: Extended abstract of candidate¢s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

DSTU B.1.1-28:2010. (2011). Protection from hazardous geological processes, harmful operational influences, from fire. Scale of seismic intensity. Kiev: Minregionstroy of Ukraine (in Ukrainian).

Yegorova, T. P., & Pavlenkova, G. A. (2015). Velocity-density models of the Earth’s crust and upper mantle from the quartz, Craton, and Kimberlite superlong seismic profi-les.Izvestiya. Fizika Zemli, 51(2), 250—267 (in Russian).

Entin, V. A., Gintov, O. B., Myschak, & S. V., Yushin, A. A. (2015). The structure of the Moldovan iron ore deposit (The Ukrainian Shield) according to geological-geophysical data and its possible endogenous nature. Geofizicheskiy zhurnal, 37(4), 3—20. https://doi.org/10. 24028/gzh.0203-3100.v37i4.2015.111118 (in Russian).

Zagorodnyuk, P. A., Ivanova, E. N., & Liventseva, A. A. (2018). Technological platforms in the field of Earth sciences — a response to challenges of the XXIst century. Geofizicheskiy zhurnal, 40(2), 3—11. https://doi.org/10. 24028/gzh.0203-3100.v40i2.2018.128876 (in Russian).

Zayets, L. N. (2013). Three-dimensional P-velocity model of the mantle of Southeast Asia: Extended abstract of candidate¢s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Ignatyshyn, V. V. (2013). Dynamics of deformation processes in the zone of the Oashsky fault according to the results of monitoring geophysical studies: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Kalinyuk, I. V., Ganiev, A. Z., & Torbek, V. Y. (2016). Application of the automated system Winston for collecting, storing and sharing of seismological data. Seysmicheskiye pribory, 52(3), 35—49 (in Russian).

Kapitsa, P. A. (1977). Experiment. Theory. Practice. Moscow: Nauka (in Russian).

Kendzera, O. V. (2016). Geophysical Problems of Construction in Ukraine. In Building const-ruction. Soil mechanics, geotechnics and foun-dation engineering (Is. 83, Book 1, pp. 89—108). Kiev GP NIISK (in Ukrainian).

Kendzera, O. V. (2015). Seismic hazard assessment and protection against earthquakes. Practical applications of developments of Sub-botin Institute of Geophysics of NAS of Ukraine. Visnyk NAN Ukrainy, (2), 44—57. https: //doi.org/10.15407/visn2015.02.044.

Kendzera, A. V. (1987). The way of obtaining the calculated accelerograms by recounting from seismic records. Geofizicheskiy zhurnal, 9(5), 75—791 (in Russian).

Kendzera, A. V., Verbitsky, S. T., Semenova, Yu. V., & Verbitskaya, A. S. (2016). Status and problems of development of seismological studi-es for seismic design. Visnyk Odeskoyi derzhavnoyi akademiyi budivnytstva ta arkhitektury, (65), 83—189 (in Ukrainian).

Kendzera, O. V., Vyzhva, S. A., & Vinnichenko, O. B. (2008). Influence of natural and technogenic processes on potentially dangerous objects. Kiev: CPI “Kiev University” (in Ukrainian).

Kendzera, O. V., & Semenova, Yu. V. (2017). Modeling the influence of the soil sequence on the parameters of seismic hazard. Svit heotekhniky, (3), 4—14 (in Ukrainian).

Kilifarska, N. A., Bakhmutov, V. G., & Melnik, G. V. (2015). Relation between geomagnetic field and climate variability. Part 2: Probable mechanism. Geofizicheskiy zhurnal, 37(5), 3—11. https://doi.org/10.24028/gzh.0203-3100.v 37i5.2015.111146 (in Russian).

Kobolev, V. P. (2016). Plume-tectonic aspect of rifting and evolution of the megacutane of the Black Sea. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (2), 16—36 (in Russian).

Kopolev, V. P., & Verpakhovskaya, A. O. (2014). Accumulations of gas hydrates in the Dnieper paleodel as an object of seismic studies on the slope of the northwestern shelf of the Black Sea. Geologiya i poleznyye iskopayemyye Mi-rovogo okeana, (1), 81—93 (in Russian).

Kobolev, V. P., Chulkov, S. S., Ganiev, A. Z., Kozlenko, Yu. V., Zakharov, I. G., Lyubitsky, A. A., & Ignatiev, S. M. (2013). The 74th flight of the SRV “Professor Vodyanitsky” — complex expeditionary research on the continental slope of the northwestern shelf of the Black Sea. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (3), 175—180 (in Russian).

Kolomiets, K. V. (2015). Simulation of wave fields in the interpretation of data from wide-angle deep seismic surveys: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Kolomiyets, K. V., Kozlenko, M. V., Kozlenko, Yu. V., & Lysynchuk, D. V. (2013). Long-term tecto-nics of the Dnipro-Donetsk western by tomo-graphic inversion data. Geologicheskiy zhurnal, (2), 59¾67 (in Russian).

Korchin, V. A., Burtnyy, P. A., Karnaukhova, E. E. (2014). Temperature and petrophysical mode-ling of the Antarctic peninsula Earth’s crust deep horizons. Ukrayinskyy antarktychnyy zhurnal, (13), 31—47 (in Russian).

Korchin, V. A., Burtnyy, P. A., & Kobolev, V. P. (2013). Thermobaric petrophysical modeling in petrophysics. Kiev: Naukova Dumka (in Russian).

Kulik, V. V., & Bondarenko, M. S. (2013a). Determination of petrophysical parameters of technogenic methane reservoirs in the context of carbonaceous massifs with the help of a complex of radioactive logging. Naukovi pratsi UkrNDMI NAN Ukrayiny, (13), 191—210 (in Russian).

Kulyk, V. V., & Bondarenko, M. S. (2013b). Increase of informativity of radioactive logging in determining parameters of non-traditional gas collectors. Collection of scientific works “Theoretical and applied aspects of geoinformatics”, (10), 32—40 (in Ukrainian).

Kulyk, V. V., & Bondarenko, M. S. (2014). The way of allocation of gas-saturated rocks and determination of their porosity. Patent for utility model No. 95425 dated December 25, 2014 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., & Deineko, S. I. (2015a). Method of determination of clayey rocks parameters by a complex of radioactive logging. Patent for invention No. 109230 of 27.07.2015 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., Deineko, S. I., & Ketov, A. Yu. (2013a). Method of borehole determination of the mass and volume content of clay minerals in rocks. Patent for utility model No. 83841 dated September 25, 2013 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., & Eustache-vych, S. M. (2015b). Method of constructing the calibration dependence of the two-probe neutron-neutron logging tool. Patent for utility model No. 97334 dated March 10, 2015 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., Eustachevych, S. M., & Ketov, A. Yu. (2013a). Multi-probe instrument of radioisotope logging for investigation of natural and technogenic rocks. Pa-tent for invention No. 102619 of 25.07.2013 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., & Kamilova, O. V. (2013c). Method for determination of closed gas-saturated porosity of rocks. Patent for utility model No. 76747 dated January 10, 2013 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., & Kamilova, A. V. (2013d). Method for determination of the mineral density of the rock skeleton. Patent for invention No. 103849 of 25.11.2013 (in Ukrainian).

Kulyk, V. V., Bondarenko, M. S., & Krivonos, A. N. (2014). Method of determination of parameters of gas-bearing reservoirs. Patent for invention No. 106560 of 10.09.2014 (in Ukrainian).

Kulyk, V. V., Evstakhevych, D. S., Bondarenko, M. S., & Krivonos, A. N. (2015c). Neutron-neutron logging tool. Patent for utility model No. 95999 dated January 12, 2015 (in Ukrainian).

Kutas, R. I. (2016). Geothermal Conditions and Mesozoic-Cainozoic Evolution of the Carpatho-Pannonian Region. Geofizicheskiy zhurnal, 38(5), 75—107. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107823 (in Russian).

Kutas, R. I. (2014). Thermal flow and geothermic models of the Earth’s crust of the Ukrai-nian Carpathians. Geofizicheskiy zhurnal, 36(6), 3—27. https://doi.org/10.24028/gzh.0203-3100.v36i6.2014.111016 (in Russian).

Kutas, R. I. (2013). Geothermal model of the Earth’s crust across the Eastern Carpatians along the seismsc profile DOBRE-3 (PANCAKE). Geodynamika, (2), 192—194 (in Ukrai-nian).

Kutas, R. I. (2015). Geothermal Conditions and Crustal Structure of the Northwestern Carpathians. Geoinformatika, (4), 1—12 (in Ukrainian).

Kushnir, A. M. (2015). Simultaneous magnetotelluric and magnetovariational soundings of the northern part of the Dnieper-Donets trough. Dopovidi NAN Ukrainy, (5), 96—102. https://doi.org/10.15407/dopovidi2015.05.096 (in Ukrainian).

Lebed, T. V. (2015). Three-dimensional magnetic models of the Earth’s crust of the Dnieper-Donets and Azov-Black Sea oil and gas regions of Ukraine: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Lysynchuk, D. V. (2017). High-speed models of the lithosphere of Ukraine from data of wide-angle seismic soundings: Extended abstract of Doctor’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Logvinov, I. M. (2013). Geoelectric parameters of upper mantle in Western Ukraine and aro-und the observatory pleschinitsa. Geodynamika, (2), 213—215 (in Russian).

Logvinov, I. M. (2015). A map of total longitudinal conductivity of the sedimentary cover of the Central Ukraine. Dopovidi NAN Ukrainy, (11), 66—74. https://doi.org/10.15407/do povidi2015.11.066 (in Russian).

Logvinov, I. M., & Tarasov, V. N. (2015a). Geoelectric model of the crust and upper mantle along DSS profile Novoazovsk—Titovka. Geofizicheskiy zhurnal, 37(3), 139—152. https: //doi.org/10.24028/gzh.0203-3100.v37i3.2015. 111115 (in Russian).

Logvinov, I. M., & Tarasov, V. N. (2015b). Geoelectric models. In Donbass (geophysics, deep processes) (pp. 90—107). Kiev: Logos (in Russian).

Logvinov, I. M., & Tarasov, V. N. (2017). Meri-dional heterogeneities (according to magnetotelluric studies) on the territory of the Dni-eper-Donets Basin. Dopovidi NAN Ukrainy, (8), 57—63. https://doi.org/10.15407/dopovi di2017.08.057 (in Russian).

Lukin, A. Ye., & Shestopalov, V. M. (2018). From new geological paradigm to the problems of regional geological-geophysical survey. Geofizicheskiy zhurnal, 40(4), 3—72. https://doi. org/10.24028/gzh.0203-3100.v40i4.2018.140610 (in Russian).

Lviv. (1998). In Encyclopedic Dictionary (P. 665). Moscow: The Great Russian Encyclopedia (in Russian).

Lviv Polytechnic Institute. (1998). In Encyclopedic Dictionary (P. 665). Moscow: The Great Russian Encyclopedia (in Russian).

Melnyk, G. V., Bakhmutov, V. G., & Shenderovska, O. Ya. (2014). Antarctic geomagnetic field changes in the last century. Ukrayinskyy antarktychnyy zhurnal, (13), 75—80 (in Russian).

Murovskaya, A. V., & Bakhmutov, V. G. (2015). Preliminary results of field tectonophysical study in the West coast of Antarctic Peninsula. Ukrayinskyy antarktychnyy zhurnal, (14), 66—73 (in Russian).

Murovskaya, A., Hippolyte, J.-C., Sheremet, Ye., & Yegorova, T. (2018). Recent and paleo-stresses at the northern margin of the Black Sea and the Crimea Mountain in Meso-Cenozoic—Quarter (according to mechanisms of earth-quakes foci and field tectonophysical data). Geofizicheskiy zhurnal, 40(1), 44—69. https: //doi.org/10.24028/gzh.0203-3100.v40i1.2018. 124013 (in Russian).

Murovskaya, A., Hippolite, J.-C., Sheremet, Ye., Yegorova, T., Volfman, Yu., & Kolesnikova, E. (2014a). Deformational structures and stress field of the south-western Crimea in the context of the evolution of western black basin. Geodynamika, (2), 53—68 (in Russian).

Murovskaya, A. V., Nakapelyukh, M. V., Vikhot, Yu. M., Shlapinskiy, V. E., Bubnyak, I. N., & Mychak, S. V. (2016). Kinematic evolution of the Pieniny Klippen Belt in Cenozoic (Ukrainian Carpathians). Geofizicheskiy zhurnal, 38(5), 119—136. https: //doi.org/10.24028/gzh.0203-3100.v38i5.2016. 107826 (in Russian).

Murovskaya, A., Sheremet, Ye., Kolesnikova, Ye., & Lazarenko, O. (2014b). Deformations in the Upper Cretaceous—Neogene sediments of the South-Western Crimea on the base of new tectonophysical data. Geofizicheskiy zhurnal, 36(6), 79—92. https://doi.org/10.24028/gzh. 0203-3100.v36i6.2014.111027 (in Russian).

Mychak, S. V. (2016). Geodynamic development of the Ukrainian Shield and the formation of mineral deposits according to geophysical and geochronological studies. Visnyk NAN Ukrai-ny, (6), 77—85. https://doi.doi.org/10.15407/visn2016.06.077 (in Ukrainian).

Mychak, S. V. (2015). Kinematics of formation of the western and central parts of the Ukrainian Shield between 2,02—2,05 Ga ago. Geofizicheskiy zhurnal, 37(1), 83—99. https://doi. org/10.24028/gzh.0203-3100.v37i1.2015.111327 (in Russian).

Nakapelyukh, M. V. (2014). Evolution of paleo-stress fields and the geodynamic model of the South-Eastern part of the Ukrainian Carpathians: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

National academy of sciences of Ukraine 1918—2013. Kiev: Feniks, 2013. 448 p. (in Ukrainian).

Nemchinov, Yu. I., Marienkov, N. G., Babik, K. N., Khavkin, A. K., Dorofeev, V. S., Egupov, K. V., ... Sklyar, A. (2015). Normative documents on seismic construction of a new generation. The main provisions of the DBN B.1.1-12: 2014: “Construction in seismic regions of Ukraine” taking into account the recommendations of the European standard EN 1991-1 (EUROCOD 8) and DSTU-N B B.1.2-16: 2013. In Interdepartmental scientific and technical collection “Construction in seismic regions of Ukraine”. Building construction (Is. 82. Se-ries KV No 8159, pp. 3—43. Kiev: SE NIISK (in Russian).

Nemchinov, Yu. I., Marienkov, N. G., Khavkin, A. K., Bambura, A. N., Tarasyuk, V. G., Sharapov, G. V., ... Gorodetsky, A. S. (2006). State norms “Con-struction in seismic regions of Ukraine”. In Building construction (Is. 64, pp. 3—19). Kiv: SE NIISK (in Russian).

Orlyuk, M. I., & Drukarenko, V. V. (2018). Prediction of pathways and places of accumulation for hydrocarbons of the Chernigiv segment of the Dnieper-Donets aulacogene in relation to magnetic heterogeneity. Geofizicheskiy zhurnal, 40(2), 123—140. https://doi. org/10.24028/gzh.0203-3100.v40i2.2018.128935 (in Ukrainian).

Orlyuk, M. I., Marchenko, A. V., & Romenets, A. A. (2017). Spatial-temporeral changes in the geo-magnetic field and seismisity. Geofizicheskiy zhurnal, 39(6), 84—105. https://doi.org/10. 24028/gzh.0203-3100.v39i6.2017.116371 (in Russian).

Orlyuk, M. I., Romenets, A. A., Marchenko, A. V., Orlyuk, I. M., & Ivashchenko, I. N. (2015). Magnetic declination of the territory of Ukraine: the results of observations and calculations. Geofizicheskiy zhurnal, 37(2), 73—85. https://doi.org/10.24028/gzh.0203-3100.v37i2. 2015.111307 (in Russian).

Orlyuk, M. I., Romenets, A. A., & Orliuk, I. M. (2014). Technical low-frequency magnetic no-ise in Kiev. Dopovidi NAN Ukrainy, (3), 110—114 (in Russian).

Orlyuk, M. I., Marchenko, A. V., & Yatsevsky, P. I. (2018). Correlation of radon and geomagne-tic anomalies of the territory of Ukraine. Dopovidi NAN Ukrainy, (5), 60—66. https://doi. org/10.15407/dopovidi2018.05.060 (in Ukrainian).

Pavlenkova, N. I. (2013). The role of deep geophysical research in solving the problem of Earth’s degassing and the formation of inorganic oil. Glubinnaya geofizika, 1(6), 811—824 (in Russian).

Pashkevich, I. K., & Bakarzhieva, M. I. (2016). Mafic dykes of Ingul megablock (Ukrainian Shield): relationship of surface and deep structures of the lithosphere, fault tectonics and geodynamics. Geofizicheskiy zhurnal, 38(5), 49—66. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107821 (in Russian).

Pashkevich, I. K., Savchenko, A. S., Starostenko, V. I., & Sharov, N. V. (2015a). Three-dimensional geological and geophysical models of the crust of the central part of the Karelian craton. In V. Ya. Gorkovets, N. V. Sharov (Eds), Kostomukshsky ore district (geology, deep structure and minerogenesis) (pp. 133—159). Petrozavodsk: Karelian Research Center of the Russian Academy of Sciences (in Russian).

Pashkevich, I. K., Savchenko, A. S., Starostenko, V. I., & Sharov, N. V. (2015b). A three-dimensional geophysical model of the Earth’s crust in the central part of the Karelian Craton. Doklady AN, 463(4), 469—473. doi: 10.7868/S08695652 1522020X (in Russian).

Pilipenko, V. N., Verpakhovskaya, A. O., & Bud-kevich, V. B. (2016). Three-dimensional temporal migration according to initial data of areal seismic exploration. Geofizicheskiy zhurnal, 38(1), 43—56. https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107721 (in Russian).

Pilipenko, V. N., Verpahovskaya, A. O., Budke-vich, V. B., & Pilipenko, E. V. (2015). Formation of three-dimensional image of the medium by the sum of CDP for the studies of geological structure of mine fields. Geofizicheskiy zhurnal, 37(4), 104—113. https://doi.org/10.24028/gzh.0203-3100.v37i4.2015. 111129 (in Russian).

Polyachenko, E. B. (2016). Paleomagnetism of Middle Paleozoic sediments in the southwestern part of the East European Platform: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Ponomarenko, A. N. (Ed.). (2016). Geoelectric and geochemical studies of hydrocarbons in Ukraine. Kiev: Comprint (in Russian).

Popkov, V. S., Bogayenko, M. V., Roman, V. I., & Grin, D. N., Mukoed N. I. (2017). Method of excitation of seismic waves. Application for invention number a2017 12828 from 12/26/2017 (in Ukrainian).

Practical guide. Determination of seismic ha-zard parameters. Design of earthquake-resistant structures in accordance with the Euro-code 8. Part 1. (2015). Kiev: LLC Ukrainian Center for Advertising and Printing (in Ukrainian).

Prodayvoda, H. T., Tripolskyy, O. A., & Chulkov, S. S. (2008). Seismic surveys. Kiev: Kyiv University Technical Computing Center (in Ukrainian).

Pustovitenko, B. G., Kulchitsky, V. E., & Pustovitenko, A. A. (2006). New maps of general seismic zoning of the territory of Ukraine. Features of the model of long-term seismic hazard. Geofizicheskiy zhurnal, 28(3), 54—77 (in Russian).

Ryzhov, D. I., Shugailo, A. P., Shugaylo, A. P., Kendzera, A. V., Marienkov, M. G., Shenderovich, V. Ya., & Buryak, G. Ya. (2017). About modern requirements for earthquake-resistant design and evaluation of seismic security of nuclear power plants of Ukraine. Yaderna ta radiatsiyna bezpeka, (2), 9—13 (in Ukrainian).

Rokytansky, I. I. (2014). On the construction of a database in geoelectrics. Geoinformatika, (1), 38—45 (in Russian).

Rokityansky, I. I., Babak, V. I., & Tereshyn, A. V. (2014). On the Carpathian electrical conductivity anomaly depth study. Geofizicheskiy zhurnal, 36(3), 146—159. https://doi.org/10. 24028/gzh.0203-3100.v36i3.2014.116062 (in Russian).

Rokityansky, I., Babak, V., & Tereshyn, A. (2017). The experience of comparing the variations of the induction vector in magnetically conjugate points. Geofizicheskiy zhurnal, 39(5), 83—91. https://doi.org/10.24028/gzh.0203-3100.v39i5.2017.112342 (in Russian).

Rokityansky, I. I., & Starukh, B. K. (2013). The oxidation-reduction potentials of some Crimean natural waters. Geodynamika, 15(2), 308—310 (in Russian).

Roman, V. I. (2014). Signal-noise ratio of adaptive geophysical studies. Geofizicheskiy zhurnal, 36(2), 186—190. https://doi.org/10.24028/gzh.0203-3100.v36i2.2014.116137 (in Russian).

Roman, V. I., Zakariev, Yu. Sh., Ryaboshapko, S. M., Grin, D. M., & Mukoed, N. I. (2013). Intensive seismic exploration. Zbirnik naukovykh prats UkrDGRI, (4), 86—92 (in Russian).

Roman, V. I., Zakariev, Yu. Sh., Ryaboshapko, S. M., Popkov, V. S., Bogayenko, M. V., Grin, D. M., & Mukoed, N. I. (2015). Technical and technological complexes for adaptive seismic surveys. Zbirnik naukovykh prats UkrDGRI, (1), 37—45 (in Ukrainian).

Roman, V. I., Mukoed, N. I., & Grin, D. M. (2017). Adaptive seismic survey. Patent for a utility model №116903 (u 2016 12814) of 06.12.2017.

Roman, V. I., Popkov, V. S., Bogayenko, M. V., Grin, D. N., & Mukoed, N. I. (2018a). Source of seismic vibrations. Patent for utility model number 125544 (u 2017 12827) of 05.10.2018.

Roman, V. I., Popkov, V. S., Bogayenko, M. V., Evstakhevich, S. M., Dmitrenko, A. V., & Grin, D. N., Mukoed, N. I. (2018b). A method for exciting seismic waves. The patent for the invention № 116423 (a2016 13407) from 12.03.2018.

Romenets, A. A. (2016). Spatiotemporal perturbation of the geomagnetic field of the territory of Ukraine: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Rusakov, O. M. (2016). In pursuit of the specter of biogenic carbon in the Black Sea. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (4), 118—127 (in Russian).

Rusakov, O. M., & Kutas, R. I. (2014). Fata morgana of biogenic doctrine of hydrocarbons in the Black sea. Geofizicheskiy zhurnal, 36(2), 3—17. https://doi.org/10.24028/gzh.0203-3100.v36i2.2014.116113 (in Russian).

Savchenko, O. S. (2016). Automated system for quantitative interpretation of data on potential fields: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Semenova, Yu. V. (2016). Methods for establishing the resonant properties of soil comp-lexes during seismic microzonation: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

SNiP 2-7-81. Building regulations. Constructi-on in seismic areas. (1995). Moscow: Ministry of Construction of Russia (in Russian).

Sobisevich, L. E., Starostenko, V. I., Rogozhyn, E. A., Lutikov, A. I., Sobisevich, A. L., Kanonidi, K. H., ... Orlyuk, M. I. (2016). Abnormal geophysical and seismotectonic processes observed du-ring the period of preparation and development of the earthquake with a magnetude of 8,8 Maule 2010 (Chile). Geofizicheskiy zhurnal, 38(6), 25—40. https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91957 (in Russian).

Starostenko, V. I. (2011). Institute of Geophysics of the National Academy of Sciences of Ukraine — 50 years. Geofizicheskiy zhurnal, 33(1), 154—158. https://doi.org/10.24028/gzh. 0203-3100.v33i1.2011.117448 (in Russian).

Starostenko, V. I., & Gintov, O. B. (2014). Geotectonics, deep structure and ore deposits of the Kirovograd ore region of the Ukrainian Shield according to geophysical data. Mineralogichnyy zhurnal, 36(2), 27—47 (in Russian).

Starostenko, V. I., & Gintov, O. B. (Eds). (2013). The Kirovograd ore area. Deep structure. Tectonophysical analysis. Ore deposits. Kiev: Prastyi ludy (in Russian).

Starostenko, V. I., & Gintov, O. B. (Eds). (2018). Essays on the geodynamics of Ukraine. Kiev: VІ ЕN ЕY (in Russian).

Starostenko, V. I., & Isichenko, E. P. (2006). Geophysics at the National Academy of Sciences of Ukraine before the creation of the Department of Earth Sciences (1918—1963). Geofizicheskiy zhurnal, 28(3), 128—163 (in Russian).

Starostenko, V. I., & Isichenko, E. P. (2013). Institute of Geophysics of the National Academy of Sciences of Ukraine at the beginning of the XXI century: results of fundamental and applied research. Geofizicheskiy zhurnal, 35(5), 3—128. https://doi.org/10.24028/gzh. 0203-3100.v35i5.2013.116441 (in Russian).

Starostenko, V. I., & Isichenko, E. P. (2003). Little-known pages of the history of the formation and development of geophysical research in Ukraine. Geofizicheskiy zhurnal, 25(5), 6—30 (in Russian).

Starostenko, V. I., Isichenko, E. P., & Lebedev, T. S. (2000). The Institute of Geophysics of the National Academy of Sciences of Ukraine is 40 years old. Geofizicheskiy zhurnal, 22(6), 3—49 (in Russian).

Starostenko, V. I., Kazanskiy, V. I., Popov, N. I., Drogitskaya, G. M., Zayats, V. B., Tripolskiy, A. A., & Chicherov, M. V. (2013a). New data on the metallogeny and deep structure of the Kirovograd Polymetal ore district (Ukrainian Shield). Geofizicheskiy zhurnal, 35(2), 3—17. https://doi.org/10.24028/gzh.0203-3100.v35i2. 2013.111318 (in Russian).

Starostenko, V. I., Legostaeva, O. V., Makaren-ko, I. B., & Savchenko, A. S. (2015a). Software system for automated data interpretation of potential fields (GMT-Auto). Geofizicheskiy zhurnal, 37(1), 42—52. https://doi.org/10. 24028/gzh.0203-3100.v37i1.2015.111322 (in Russian).

Starostenko, V. I., Lukin, A. E., Rusakov, O. M., Pashkevich, I. K., Lebed, T. V. (2015b). Hydrocarbon through a fluid-carrying channel on the north-western shelf of the Black Sea according to three-dimensional magnetic mode-ling. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (2), 147—158 (in Russian).

Starostenko, V. I., Lukin, A. E., Tsvetkova, T. A., & Shumlyanskaya, L. A. (2014). Geofluids and up-to-date display of activization of the Ingul megablock of the Ukrainian Shield. Geofizicheskiy zhurnal, 36(5), 3—25. https://doi. org/10.24028/gzh.0203-3100.v36i5.2014.111567 (in Russian).

Starostenko, V. I., Pashkevich, I. K., Makarenko, I. B., Kuprienko, P. Ya., & Savchenko, A. S. Geodynamical interpretation of the geological and geophysical heterogeneity of the Dnieper-Donets basin lithosphere. Dopovidi NAN Ukrainy, (9), 84—94. https://doi.org/10.15407/dopo vidi2017.09.084 (in Russian).

Starostenko, V. I., Pashkevich, I. R., Makarenko, I. B., Kuprienko, P. Ya., & Savchenko, A. S. (2017b). Lithosphere heterogeneity of the Dnieper-Donets basin and its geodynamical consequences. Part I. Deep structure. Geodynamika, (1), 125—138 https://doi.org/10.23939/jgd2017.01.125 (in Russian).

Starostenko, V. I., Pashkevich, I. R., Makarenko, I. B., Kuprienko, P. Ya., & Savchenko, A. S. (2017ñ). Lithosphere heterogeneity of the Dnieper-Donets basin and its geodynamical consequences. Part II. Geodynamics interpretation. Geodynamika, (2), 83—103. https://doi.org/10.23939 /jgd2017.02.083 (in Russian).

Starostenko, V. I., & Rusakov, O. M. (Eds). (2015). Tectonics and hydrocarbon potential of the crystalline basement of the Dnieper-Donets Basin. Kiev: Galaktika (in Russian).

Starostenko, V. I., Kharitonov, O. M., & Guterman, V. G. (1998). Geophysics at the National Academy of Sciences of Ukraine: a historical essay on the 80th anniversary of the Academy. Geofizicheskiy zhurnal, 20(6), 3—17 (in Russian).

Starostenko, V. I., Sharypanov, V. M., Sharypanov, A. V., Savchenko, A. S., Legostaeva, O. V., Makarenko, I. B., & Kuprienko, P. Ya. (2016). Interactive software package Isohypse for three-dimensional geological and geophysical models, and its practical use. Geofizicheskiy zhurnal, 38(1), 30—42. https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107720 (in Russian).

Starostenko, V. I., Shuman, V. N., Pashkevich, I. K., Legostaeva, O. V., & Savchenko, A. S. (2013e). Methods for reconstructing harmonic functions from the magnetic field T and V. N. Strakhovs function S: A review. Fizika Zemli, (1), 151—160. doi: 10.7868/S0002333713010158 (in Russian).

Starostenko, V. I., Yanik, T., Gintov, O. B., Lysynchuk, D. V., Šroda, P., Chuba, V., ... Tolkunov, A. P. (2017d). The speed model of the crust and upper mantle along the DOBRE-4 profile from Northern Dobrudja to the central region of the Ukrainian Shield. 1. Seismic data. Fizika Zemli, (2), 24—35. doi: 10.7868/S0002333717020120 (in Russian).

Starostenko, V. I., Yanik, T., Gintov, O. B., Lysynchuk, D. V., Šroda, P., Chuba, V., ... Tolkunov, A. P. (2017e). The speed model of the crust and upper mantle along the DOBRE-4 profile from Northern Dobrudja to the central region of the Ukrainian Shield. 2. Geotectonic interpretation. Fizika Zemli, (2), 24—35. doi: 10.7868/S0002333717020132 (in Russian).

Starostenko, V. I. (2015). Geophysics: results of basic and applied research. Visnyk NAN Ukrainy, (5), 32—34 (in Ukrainian).

Starostenko, V. I., Gintov, O. B., & Kutas, R. I. (2016). Geophysical research to increase efficiency of minerals search in Ukraine. Visnyk NAN Ukrainy, (3), 54—61 (in Ukrainian).

Tarasov, V. N., Logvinov, I. M., & Gordienko, I. V. (2013). The results of magnetotelluric investigations on the east of Donbas. Dopovidi NAN Ukrainy, (7), 96—101 (in Russian).

Topolyuk, O. V. (2016). High-speed models of the main geological structures of the Kirovograd ore district according to the PES data and their importance for studying the deep structure of the Earth’s crust and prospecting for mineral deposits: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Tregubenko, V. I., Maksimchuk, V. Yu., Orlyuk, M. I., Myasoedov, V. P., Marchenko, D. O., & Romenets, A. A. (2013). Components of the Earth’s magnetic field on the territory of Ukraine for the 2010 era. according to the measurement results in points of the secular course. Mineralni resursy Ukrayiny, (3), 37—40 (in Ukrainian).

Tretyak, K. R., Maksimchuk, V. Yu., Kutas, R. I., Rokityansky, I. I., Gnilko, A. N., Kendzera, A. V., ... Tereshin A. V. (2015). Modern geodynamics and geophysical fields of the Carpathians and adjacent territories. K. R. Tretyak, V. Yu. Maksimchuk, R. I. Kutas (Eds). Lviv: Publishing House of Lviv Polytechnic (in Ukrainian).

Ulomov, V. I., Peretokin, S. A., Medvedeva, N. S., Akatova, K. N., & Danilova, T. I. (2014). Seismological aspects of general seismic zoning for the territory of the Russian Federation (maps OSR-97, OSR-2012, OSR-2014). Voprosy inzhenernoy seysmologii, 41(4), 5—24 (in Russian).

Usenko, O. V. (2013). Deposits of minerals of the Kirovograd ore region of the Ukrainian Shield: connection with the deep process. Geofizicheskiy zhurnal, 35(6), 128—145. https://doi.org/10.24028/gzh.0203-3100.v35i6. 2013.116523 (in Russian).

Usenko, O. V. (2014). Formation of melts: a geodynamic process and physico-chemical interactions. Kiev: Naukova Dumka (in Russian).

Usenko, O. V. (2016). Evolution of melts and fluids as a reflection of the crust and mantle formation by the example of the Middle Dnieper mega-block of the Ukrainian Shield. Archean. Geofizicheskiy zhurnal, 38(2), 35—50. https://doi.org/10.24028/gzh.0203-3100.v 38i2.2016.107764 (in Russian).

Farfulyak, L. V. (2016). The deep structure of the western part of the Scythian microplate using modern seismic data: Extended abstract of candidate’s thesis. Kiev: Institute of Geophysics, National Academy of Sciences of Ukraine (in Ukrainian).

Khazan, Ya. M., & Aryasova, O. V. (2014). Stability of the boundary layer between the lithosphere and convecting mantle and the steady-state lithospheric geotherm. Fizika Zemli, (4), 86—105 (in Russian).

Tsvetkova, T. A. (2015). Two approaches to the problem of ray seismic tomography. Geofizi-cheskiy zhurnal, 37(1), 121—133. https://doi. org/10.24028/gzh.0203-3100.v37i1.2015.111330 (in Russian).

Tsvetkova, T. A., Bugaenko, I. V., & Zaets, L. N. (2016). Velocity divisibility of the mantle beneath the Ukrainian Shield. Geofizicheskiy zhurnal, 38(4), 75—87. https://doi.org/10. 24028/gzh.0203-3100.v38i4.2016.107802 (in Russian).

Tsvetkova, T. A., Bugaenko, I. V., & Zaets, L. N. (2017). Seismic visualization of plumes and super-deep fluids in mantle under Ukraine. Geofizicheskiy zhurnal, 38(2), 35—50. https: //doi.org/10.24028/gzh.0203-3100.v39i4.2017. 107506 (in Russian).

Tsvetkova, T., Bugaenko, I., & Zaets, L. (2015). Three-dimensional P-speed model of the mantle of Fennoscandia. Saarbrücken (Deutschland): LAP LAMBERT Academic Publishing (in Russian).

Chornyy, A. V., Chorna, O. A., & Yakymchyk, A. I. (2013). The theory of mathematical processing of geodetic measurements. Kiev: Naukova Dumka (in Ukrainian).

Sheremet, E., Sosson, M., Gintov, O., Müller, K., Yegorova, T., & Murovskaya, A. (2014). Key problems of the eastern part of the Crimea Mountain stratigraphy. New micropaleontologic information for dating of flysh rocks. Geofizicheskiy zhurnal, 36(2), 35—56. https://doi.org/10.24028/gzh.0203-3100.v36i2.2014. 116117 (in Russian).

Shestopalov, V. N., Lukin, A. E., Zgonik, V. A., Makarenko, A. N., Larin, N. V., & Boguslovsky, A. S. (2018). Essays on Earth’s degassing. Kiev: Publication Association “BADATA-Intek Service” (in Russian).

Shnyukov, E. F., Ziborov, A. P., & Kobolev, V. P. (2015). The problem of the development of deep-sea organo-mineral raw materials in the Black Sea. Geologiya i poleznyye iskopayemyye Mirovogo okeana, (2), 50—64 (in Russian).

Shnyukov, E. F., Kobolev, V. P., & Pasynkov, A. A. (2013). Gas volcanism of the Black Sea. Kiev: Logos (in Russian).

Steinberg, V. V., Saks, M. V., Aptikaev, F. F., Alkaz, V. G., Gusev, A. A., Erokhin, L. Yu., ... Chernov, Yu. K. (1993). Seismic Impact Assessment Methods (manual). Voprosy inzhenernoy seysmologii (is. 34), 5—94 (in Russian).

Schuman, V. N. (2017). Selected Works. Kiev: Talcom (in Russian). 608 p.

Yanovskaya, T. B., Gobarenko, V. S., & Yegorova, T. P. (2016). The structure of the subcrustal lithosphere of the Black Sea basin accor-ding to seismological data. Fizika Zemli, (1), 15—30. doi: 10.7868/S0002333716010105 (in Russian).

Aryasova, O. V., & Khazan, Y. M. (2016). A new approach to computing steady-state geotherms: The marginal stability condition. Tectonophysics, 693, 32—46. doi: 10.1016/j.tecto. 2016.10.014.

Boychenko, S., Voloschuk, V., Kuchma, T., Ser-dychenko, N. (2018). Long-time changes of the thermal continentality index, the amplitudes and phase of the seasonal temperature variation in Ukraine. Geofizicheskiy zhurnal, 40(3), 81—96.

Final Workshop of International Research Group Project “South Caucasus Geosciences” (October 25—27, 2017, Kiev, Ukraine). (2017). Geofizicheskiy zhurnal, 39(4), 77—124.

Giardini, D. (ed). (1999). The Global Seismic Hazard Assessment Program (GSHAP)-1992/1999. Annali di Geofisika, 42(6), 957—974. doi: https://doi.org/10.4401/ag-3780.

Gobarenko, V. S., Murovskaya, A. V., Yegorova, T. P., & Sheremet, E. E. (2016). Collisional processes at the northern coast of the Black Sea. Geotectonics, 50(4), 407—424. doi: 10. 1134/S0016852116040026.

Grünthal, G. (Ed.). (1998). European Macrose-ismic Scale 1998 (EMS-98). Luxemburg.

IRIS Annual Report. (2010). Retrived from https: //www.iris.edu/hq/files/publications/annu al_reports/doc/IRIS_2010AnnualReport_web. pdf.

Jeleńska, M., Kądziałko-Hofmokl, M., Bakhmutov, V., Poliachenko, I., & Ziółkowski, P. (2015). Paleomagnetic and rock magnetic study of Lower Devonian sediments from Po-dolia, SW Ukraine: remagnetization problems. Geophysical Journal International, 200(1), 557—573. https://doi.org/10.1093/gji/ggu411.

Kendzera, A. V. (2017). Seismicity, seismic hazard and protection against earthquakes in Ukraine. In V. B. Zaalishvili (Ed.), Geological-geophysical studies of the deep structure of the Caucasus. Geology and Geophysics of Caucasus: Contemporary Challenges and Re-search. Multi-authored monograph (pp. 172—180). Vladikavkaz: Vladikavkaz Scientific Center Geophysical institute.

Kilifarska, N. A., Bakhmutov, V. G., & Melnyk, G. V. (2013). The mystery of Antarctic climate chan-ge and its relation to geomagnetic field. Ukra-yinskyy antarktychnyy zhurnal, (12), 45—55.

Korniyenko-Sheremet, Y. (2016). Structural analysis of the Eastern Crimean Mountains (Anland-offshore): Consequence of the tectonic evolution of the northern margin of the Eastern Black Sea). Doctoral dissertation. University of Nice-Sophia, Antipolis.

Kulyk, V. V., & Bondarenko, M. S. (2016). Identification of gas reservoirs and determination of their parameters by combination of radio-active logging methods. Geofizicheskiy zhurnal, 38(2), 106—119. https://doi.org/10.24028/gzh.0203-3100.v38i2.2016.107770.

Lee W. H. K., Kanamori H., Jennings P., Kisslinger C. (Eds). (2002). International Handbook of Earthquake and Engineering Seismoogy (Part A & B). Academic Press.

Makris, Ja., Papoulia, J., & Yegorova, T. (2013). A 3-D density model of Greece constrained by gravity and seismic data. Geophysical Journal International, 194(1), 1—17. https://doi. org/10.1093/gji/ggt059.

Nakapelukh, M., Bubniak, I., Yegorova, T., Mu-rovskaya, A., Gintov, O., Shlapinskyi, V., & Vikhot, Yu. (2017). Balanced geological cross-section of the outer Ukrainian Carpathians along the PANCAKE profile. Journal of Geodynamics, 108, 13—25. doi: 10.1016/j.jog. 2017.05.005.

Orlyuk, M., Romenets, A., & Orliuk, I. (2016). Natural and technogenic components of megalopolis magnetic field. Geofizicheskiy zhurnal, 38(1), 78—86. https://doi.org/10.24028/gzh.0203-3100.v38i1.2016.107727.

Rokityanskii, I. I., Babak, V. I., & Tereshin, A. V. (2016). An analysis of geomagnetic response functions prior to the Tohoku, Japan Earthquake. Journal of Volcanology and Seismology, 10(6), 395—406. https://doi.org/10.1134 /S0742046316060063.

RomUkrSeis Working Group: Amashukeli, T., Czuba, W., Dragut, A., Gryn, D., Janik, T., Kolomiyets, K., Legostaeva, O., Lysynchuk, D., Mechie, J., Mocanu, V., Okon, J., Omelchenko, V., Skrzynik, T., Starostenko, V., Stephenson, R., Šroda, P., & Yegorova, T. (2018). RomUkrSeis: the deep structure of the TESZ where it is obscured by the Eastern Carpathians. 18th International SEISMIX Symposium. Book of abstracts. Cracow, Poland, 17—22 June 2018.

Rusakov, O. M., & Pashkevich, I. K. (2017). The decisive role of the crystalline crust faults in the Black Sea opening. Geofizicheskiy zhurnal, 39(1), 3—16. https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.93998.

Seismic Hazards in Site Evaluation for Nuclear Installations: safety guide. (2010). Vienna: International Atomic Energy Agency.

Sheremet, Y., Sosson, M., Müller, C., Murov-skaya, A., Gintov, O. B., & Yegorova, T. (2017). New datings (by Nannofossils assemblages) and structural data from flysch formations of the Crimea Peninsula (Ukraine): consequence on the tectonic evolution of the Eastern Black Sea. In M. Sosson, R. Stephenson, S. Adamia (Eds), Tectonic evolution of the Eastern Black Sea and Caucasus. Geological Society of London. Special publication, 428, pp. 265—305.

Sheremet, Ye., Sosson, M., Ratzov, G., Sydorenko, G., Voitsitskiy, Z., Yegorova, T., ... Murovskaya, A. (2016). An offshore-onland transect across the north-eastern Black Sea basin (Crimea margin): Evidence of Paleocene to Pliocene two-stage compression. Tectonophysics, 688, 84—100. doi: 10.1016/j.tecto.2016.09.015.

Soloviev, A., Gvishiani, A., Sumaruk, Yu., & Starostenko, V. (2012). Russian-Ukrainian Geomagnetic Data Center. International Conference: Open Data & Information for a Changing Planet. 28—31 October 2012, CODATA 23, Taipei.

Starostenko, V., Janik, T., Kolomiyets, K., Czuba, W., Šroda, P., Grad, M., ... Tolkunov, A. (2013a). Seismic velocity model of the crust and upper mantle along profile PANCAKE across the Carpathians between the Pannonian Basin and the East European Craton. Tectonophysics, 608, 1049—1072. doi: 10.1016/j. tecto.2013.07.008.

Starostenko, V., Janik, T., Lysynchuk, D., Šroda, P., Czuba, W., Kolomiyets, K., ... Tolkunov, A. (2013b). Mesozoic(?) lithosphere-scale buckling of the East European Craton in southern Ukraine: DOBRE-4 deep seismic profile. Geophysical Journal International, 195(2), 740—766. doi: 10.1093/gji/ggt292.

Starostenko, V., Janik, T., Stephenson, R., Gryn, D., Rusakov, O., Czuba, W., ... Shulgin, A. (2017). DOBRE-2 WARR profile: the Earth’s upper crust across Crimea between the Azov Massif and the northeastern Black Sea. In M. Sosson, R. A. Stephenson, & S. A. Adamia (Eds), Tectonic Evolution of the Eastern Black Sea and Caucasus. Geological Society, London. Special Publications, 428, pp. 199—220.

Starostenko, V., Janik, T., Yegorova, T., Czuba, W., Šroda, P., Lysynchuk, D., ... Tolkunov, A. (2018). Lithospheric structure along wide-angle seismic profile GEORIFT 2013 in Pripyat-Dnieper-Donets Basin (Belarus and Ukraine). Geophysical Journal International, 212(3), 1932—1962. doi: 10.1093/gji/ggx509.

Starostenko, V., Janik, T., Yegorova, T., Farfu-liak, L., Czuba, W., Šroda, P., ... Tolkunov, A. (2015à). Seismic model of the crust and upper mantle in the Scythian Platform: the DOB-RE-5 profile across the north western Black Sea and the Crimea peninsula. Geophysical Journal International, 201(1), 406—428. https: //doi.org/10.1093/gji/ggv018.

Starostenko, V. I., Rusakov, O. M., Pashkevich, I. K., Kutas, R. I., Makarenko, I. B., Legostaeva, O. V., Lebed T. V., Savchenko, A. S. (2015á). Hetero-geneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields. Geofizicheskiy zhurnal, 37(2), 3—28. https://doi.org/10.24028/gzh.0203-3100.v37i2.2015.111298.

Starostenko, V. I., Sumaruk, Yu. P., & Legostaeva, O. V. (2013c). Investigation of magnetic fi-eld of the Earth and Russian — Ukrainian segment of INTERMAGNET. Partnership conference “Geophysical observatories, multifunctional GIS and data mining”, Abstracts, Kaluga, Russia, 30.9.2013—02.10.2013. CD-R.

Sumaruk, Yu. P. Starostenko, V. I., & Legostaeva, O. V. (2011). Geomagnetic observatories of Ukraine in the Global Network INTERMAGNET. Russian Journal of Earth Sciences, 12, 1—12. doi: 10.2205/2011ES000506.

Sydorenko, G., Stephenson, R., Yegorova, T., Starostenko, V., Tolkunov, A., Janik, T., ... Omelchenko, V. (2017). Geological structure of the northern part of the Eastern Black Sea from regional seismic reflection data including the DOBRE-2 CDP profile. In M. Sosson, R. A. Stephenson, & S. A. Adamia (Eds), Tectonic Evolution of the Eastern Black Sea and Caucasus. Geological Society, London. Special Publications, 428, pp. 306—321.

Volfman, Y. M., Gintov, O. B., Kolesnikova, E. Ya., & Murovskaya, A. V. (2014). Tectonophysical interpretation of earthquake focal mechanisms of the Zagros system. Geodynamics & Tectonophysics, 5(1), 305—319. doi: 10.5800/GT-2014-5-1-0129.

Yegorova, T., Gobarenko, V., & Yanovskaya, T. (2013). Lithosphere structure of the Black Sea from 3D gravity analysis and seismic tomography. Geophysical Journal International, 193(1), 287—303. doi: 10.1093/gji/ggs098.




Creative Commons License
Licensed under a Creative Commons Attribution 4.0 International License.

Flag Counter