Geodynamic process and its geologic manifestations in the continents

O. Usenko


The data on the composition of the mantle and crust, results of experimental studies on melting under the pressure interval 0,5—0,7 GPa and temperatures 500—2000 °C have been integrated. Theoretical model of deep process behaviour has been proposed which is based on geophysical thermal model and in addition takes into account physical-chemical interactions in the system crystals-melt-fluid and their alterations with the increase of pressure and temperature. The melts crystallize on the surface as magmatic rocks and some part of the fluid forms the chemogenic component of the sedimentary strata. Composition, thickness and structure of sedimentary stratum are determined by the processes occurred at the border of melting layer (asthenosphere) and the lithosphere (LAB). Analysis of complex geological information has been conducted, including age and composition of magmatic and synchronous sedimentary rocks, tectonic structure, metamorphism and hydrothermal activity of phanerozoic structures. Comparison of deep process predictable by theoretical model with its geologic manifestations on the surface allows to affirm that there is some relationship between the change of occurrence of melting layer in geodynamic process and geological events specified. Basic regimes have been distinguished with each of them specified by its own set of magmatic and volcanogenic-sedimentary complexes. In the regime of “folded area” ultrabasite (lertsolite) complexes arrear at first, then volcanogenic picrites (not compulsory) are formed and then — basalts or alkaline rocks complexes. At the last stage multiphase massifs with gabbro, andesites, granites are produced. Special feature of this regime is formation of thick (rhythmic strata). Its metamorphism was realized later as a result of formation of melting focus in the crust. Rift regime is characterized by smaller integrated thickness of sediments. Constituents of these strata preferably are lavas of ultrabasites and basalts as well as of andesites and liparites. Dominance of chemogenic-sedimentary rocks is specific and minor development of metamorphic transformations. Trappe regime is manifested by magmatic rocks. Spatial connection with kimberlites and carbonatites is often observed. Magmatic ultrabasites are close to comatiite standard, basalts are widely distributed and andesites are negligibly low by amount. Sedimentary rocks are practically not represented. Dependences determined give possibility to use material composition and structural features of rocks for reconditioning of paleogeodynamic processes.


plume; asthenosphere—lithosphere border; mantle; crust; fluid currents; interactions in the system crystals-melt-fluid; geodynamic process; folded area; rift; trap province; magmatic rocks; flysch stratum


Bogatikov, O. A., Kovalenko, V. I., & Sharkov, E. V. (2010). Magmatism, tectonics and geodynamics of the Earth: connection in time and in space. Moscow: Nauka (in Russian).

Voloshina, Z. G. (1977). Volcanogenic formati-ons of the Devonian in the central part of the Dnieper-Donets depression. In Volcanism and ore formations of the Dnieper-Donets Basin and Donbass (pp. 55—74). Kiev: Naukova Dumka (in Russian).

Garrels, R., & Christ, Ch. L. (1968). Solutions, minerals, equilibria. Moscow: Mir (in Russian).

Dolenko, G. N. (Ed.). (1991). Geology and petroleum potential of the Dnieper-Donets Basin. Endogenous processes and petroleum potential. Kiev: Naukova Dumka (in Russian).

Gordienko, V. V. (2007). The advection-polymorphic hypothesis of processes in the tectonosphere. Kiev: Korvin Press (in Russian).

Gordienko, V. V., & Gordienko, I. V. (2005). Hypothetical thermal models and data of geothermometers. Dopovidi NAN Ukrainy, (3), 104—110 (in Russian).

Gordienko, V. V., & Usenko, O. V. (2003). Deep processes in the tectonosphere of Ukraine. Kiev: Publication of the Institute of Geophysics of the National Academy of Sciences of Ukraine (in Russian).

Gordienko, V. V. (Ed.). (2006). Dnieper-Donets Basin (geophysics, deep-seated processes). Kiev: Korvin Press (in Russian).

Dobretsov, N. L. (2010). Global geodynamic evo-lution of the Earth and global geodynamic models. Geologiya i geofizika, 51(6), 761—784 (in Russian).

Kadik, A. A., Lukanin, O. A., & Portnyagin, A. L. (1990). Magma formation during upward mo-vement of the mantle substance: temperature regime and composition of melts formed during adiabatic decompression of ultrabasite mantles. Geokhimiya, (9), 1263—1276 (in Russian).

Kadik, A. A., & Frenkel, M. Ya. (1982). Decompression of rocks of the crust and upper mant-le as a mechanism for the formation of magmas. Moscow: Nauka (in Russian).

Lazarenko, Ye. K., Panov, B. S., & Gruba, V. I. (1975). Mineralogy of the Donets Basin (Part 1). Kiev: Naukova Dumka (in Rusian).

Litasov, K. D. (2011). Physico-chemical conditions for melting the Earth’s mantle in the presence of volatile components (according to experimental data): Extended abstract of Doctor’sthesis. Novosibirsk (in Russian).

Lukin, A. Ye. (1997). Litologic-dynamic factors of oil and gas accumulation in aulacogenic basins. Kiev: Naukova Dumka (in Russian).

Lukin, A. Ye., & Shestopalov, V. M. (2018). From new geological paradigm to the problems of regional geological and geophysical survey. Geofizicheskiy zhurnal, 40(4), 3—72. https:// 140610 (in Russian).

Nikolis, G., & Prigozhin, I. (1990). Knowledge of the Difficult. Moscow: Mir (in Russian).

Magmatism and metallogeny of the Carpathian-Balkan folded area. Explanatory note to the map of magmatic formations and metallogenic map of the Carpathian-Balkan region of : 1 000 000 scale. (1983). Sofia: Publ. Bulgarian Academy of Sciences (in Russian).

Palyanov, Yu. N., Sokol, A. G., & Sobolev, N. V. (2005). Experimental modeling of mantle diamond forming processes. Geologiya i geofizika, 46(12), 1290—1303 (in Rusian).

Peresypkin, V. I. (2007). Molecular composition of alkano-naphthenic hydrocarbons in hydrothermal deposits of the East Pacific Rise. Geo-logy of the seas and oceans: Proceedings of the XVII International Conference (Schools) on marine geology (Vol. II, pp. 59—61). Moscow: GEOS (in Russian).

Perchuk, L. L. (1997). Deep Fluid Flows and Granite Birth. Sorosovskiy obrazovatelnyy zhurnal, (6), 56—63 (in Russian).

Purtov, V. K., Anfilogov, V. N., & Yegorova, L. G. (2002). The interaction of basalt with chloride solutions and the mechanism of formation of acid melts. Geokhimiya, (10), 1084—1097 (in Russian).

Ryabchikov, I. D. (1982). Fluid mass transfer and mantle magma formation. Vulkanologiya i seysmologiya, (5), 3—9 (in Russian).

Ryabchikov, I. D., Kogarko, L. N., & Solovova, I. P. (2009). Physico-chemical conditions of magma formation at the base of the Siberian plume according to the study of melt microinclusions in mejmechites and alkaline picrites of Maymech-Kotui province. Petrologiya, 17(3), 311—322 (in Russua).

Sobolev, A. V., Krivolutskaya, N. A., & Kuzmin, D. V. (2009a). Petrology of the parent melts and mantle sources of magmas of the Siberian Trap Province. Petrology, 17(12), 276—310 (in Russian).

Sobolev, A. V., Sobolev, S. V., Kuzmin, D. V., Malich, K. N., & Petrunin, A. G. (2009b). The Mechanism of Formation of Siberian Meymechites and the Nature of Their Connection with Traps and Kimberlites. Geologiya i geofizika, 50(12), 1293—1334 (in Russian).

Solovyova, L. V., Egorov, K. N., Markova, M. E., Kharkiv, A. D., Popolitov, K. E., & Barankevich, V. G. (1997). Mantle metasomatism and melting in deep xenoliths of the Udachnaya pipe, their possible connection with diamond and kimberlite formation. Geology and geophysics, 38(1), 172—193 (in Russian).

Specus, Z. V., & Serenko, V. P. (1990). Composition of the continental upper mantle and lower crust beneath the Siberian platform. Moscow: Nauka (in Russian).

Taran, L. N. (2013). Tectonothermal evolution of the crust of the north-west of Belarus in the paleo- and mesoproterozoic: Extended abst-ract of Doctor¢s thesis. Minsk (in Russian).

Usenko, O. V. (2013). The development of the Ingul megablock of the Ukrainian Shield during the formation of the Novoukrainsky and Korsun-Novomirgorod Plutons. Geofizicheskiy zhurnal, 35(3), 54—69. 24028/gzh.0203-3100.v35i3.2013.116394 (in Russian).

Usenko, O. V. (2014). Formation of melts: geodynamic process and physical and chemical interactions. Kiev: Naukova Dumka (in Russian).

Chekalyuk, E. B. (1980). Thermodynamic stability of hydrocarbon systems in geothermodynamic conditions. In Degassing of the Earth and geotectonics (pp. 267—274). Moscow: Nauka (in Russian).

Shnyukov, E. F., Shcherbakov, I. B., & Shnyukova, E. E. (1997). Paleoisland arc of the north of the Black Sea. Kiev: Chernobylinform (in Russian).

Chukhrov, F. V. (Ed.). (1991). Endogenous sources of ore matter. Moscow: Nauka (in Russian).

Boyd, F. R., Pearson, D. J., Hoal, K. O., Hoal, B. J., Nixon, P. H., Kingston, M. J., & Mertzman, S. A. (2004). Garnet lherzolites from Louwrensia, Namibia: bulk composition and P/T relations. Lithos, 77, 573—592.

Carlson, R. W., Pearson, D. G., & James, D. E. (2005). Physical, chemical and chronological characteristics of continental mantle. Reviews of Geophysics, 43, RG1001, 1—24. http: dx.

Condie, K. C. (2011). Earth and evolving planetary system. Elsevier.

Dawson, J. B. (2002). Metasomatism and partial melting in upper-mantle peridotite xenoliths from the Lashaine volcano, Northern Tanzania. Journal of Petrology, 43(9), 1749—1777.

Green, D. I., Falloon, T. J., Eggins, S. M., & Yaxley, G. M. (2001). Primary magmas and mantle temperatures. European Journal of Mineralogy, 13(3), 437—451. 0935-1221/2001/0013-0437.

Fischer, К. М., Ford, Н. А., Abt, D. L., & Rychert, С. А. (2010). The Lithosphere—Asthenosphere Boundary Annu. Annual Review of Earth and Planetary Sciences, 38, 551—575.

Girnis, A. V., Brey, G. P., & Ryabchikov, I. D. (1995). Origin of Group 1A kimberlites: Fluid-saturated melting experiments at 45—55 kbar. Earth and Planetary Science Letters, 134(3-4), 283—296. (95)00120-2.

Gudfinnsson, G. H., & Presnal, D. C. (2005). Continuous gradations among primary carbonatic, melilitic, basaltic, picritic, and komatiitic melts in equilibrium with garnet lherzolite at 3—8 GPa. Journal of Petrology, 46(8), 1645—1659. 029.

Hernlund, J. W., & McNamara, A. K. (2015). The core—mantle boundary region. In G. Schubert (Ed.), Treatise on Geophysics (Vol. 7, pp. 461—519). Oxford: Elsevier.

Herzberg, Ñ., Condie, K., & Korenaga, J. (2010). Thermal history of the Earth and its petrological expression. Earth and Planetary Science Letters, 292(1-2), 79—88. doi: 10.1016/j.epsl. 2010.01.022.

Ionov, D. A., Bodinier, J.-L., Mukasa, S. B., & Zanetti, A. (2002). Mechanisms and sources of mantle metasomatism: major and trace element compositions of peridotite xenolits from Spitsbergen in the context of numerical mode-ling. Journal of Petrology, 43(12), 2219—2259.

Ionov, D. A., Ashchepkov, I. V., Stosch, H.-G., Witt-Eickschen, G., & Seck, H. A. (1993). Garnet peridotite xenoliths from the Vitim volcanic field, Baikal Region: The nature of the garnetspinelperidotite transition zone in the continental mantle. Journal of Petrology, 34(6), 1141—1175.

Jones, A. G., Plomerova, J., Korja, T., Sodoudi, F., & Spakman, W. (2010). Europe from the bottom up: A statistical examination of the central and northern European lithosphere—asthenosphere boundary from comparing seismological and electromagnetic observations. Lithos, 120(1-2), 14—29. /j.lithos.2010.07.013.

Kamenetsky, M. B., Sobolev, A. V., Kamenetsky, V. S., Maas, R., Danyushevsky, L. V., Thomas, R., ... Sobolev, N. V. (2004). Kimberlite melts rich in alkali chlorides and carbonates: A potent metasomatic agent in the mantle. Geology, 32(10), 845—848. 1130/G20821.1.

Kogarko, L. N., & Zartman, R. E. (2007). A Pb isotope investigation of the Guli massif, Maymecha Kotuy alkaline-ultramafic complex, Siberian flood basalt province, Polar Siberia. Mineralogy and Petrology, 89(1-2), 113—132. doi: 10.1007/s00710-006-0139-3.

Lesher, C. E., Pickering-Witter, J., Baxter, G., & Walter, M. (2003). Melting of garnet peridotite: Effects of capsules and thermocouples, and implications for the high-pressure mantle solidus. American Mineralogist, 88(8-9), 1181—1189.

Maruyama, S., Yuen, D. A., & Windley, B. F. (2007). Dynamics of plumes and superplumes through time. In D. A. Yuen, S. Maruyama, S. Karato, & B. F. Windley (Eds.), Superplumes: Beyond Plate Tectonics (pp. 441—502). Springer.

McKenzie, D., & Bickle, M. J. (1988). The volu-me and composition of melt generated by ex-tension of the lithosphere. Journal of Petrology, 29(3), 625—679.

Morgan, W. J. (1972). Plate motions and deep mantle convection. AAPG Bulletin, 56(2), 203—213.

Olson, P., Deguen, R., Hinnov, L. A., & Zhong, S. (2013). Controls on geomagnetic reversals and core evolution by mantle convection in the Phanerozoic. Earth and Planetary Science Letters, 214, 87—103. pepi.2012.10.003.

O’Reilly, S. Y., & Griffin, W. L. (2010). The continental lithosphere—asthenosphere boundary: Can we sample it? Lithos, 120(1-2), 1—13. doi:10.1016 j.lithos.2010.03.016.

Pavlenkova, G. A., & Pavlenkova, N. I. (2006). Upper mantle structure of the Northern Eura-sia from peaceful nuclear explosion data. Tectonophysics, 416(1-4), 33—52.

Pearson, D. J., Canil, D., & Shirey, S. B. (2005). Mantle Samples Included in Volcanics Rocks: Xenoliths and Diamonds. In R. W. Carlson (Ed.), The Mantle and Core (pp. 171—276). Oxford: Elsevier.

Ritsema, J., Deuss, A., van Heijst, H. J., & Wood-house, J. H. (2011). S40RTS: a degree-40 shear-velocity model for the mantle from new Ray-leigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophysical Journal International, 184(3), 1223—1236.

Ryabchikov, I. D., Solovova, I. P., Ntaflos, Th., Büchl, A., & Tikhonenkov, P. I. (2001). Subalkaline picrobasalts and plateau basalts from Putorana plateau (Siberian CFB province). II. Melt inclusion chemistry, composition of “primary“ magmas and P-T regime at the base of superplume. Geokhimiya, (5), 484—497.

Sharapov, V. N., Perepechko, Yu. V., Perepechko L. N., & Rakhmenkulova, I. F. (2008). Mantle sources of Permian-Triassic Siberian traps (West Siberian Plate and Siberian craton). Russian Geology and Geophysics, 49(7), 492—502.

Shervais, J. W., & Hanan, В. В. (2008). Lithospheric topography, tilted plumes, and the track of the Snake River—Yellowstone hot spot. Tectonics, 27(5), 1—17. doi:10.1029/2007TC002181.

Takahashi, E. (1986). Melting of a dry peridotite KLB-1 up to 14 GPa implications on the origin of peridotite upper mantle. Journal of Geophysical Research: Solid Earth, 91, 9367—9382.

Walter, M. J. (2005). Melt Extraction and Compositionel Variability in Mantle Lithospere. In R. W. Carlson (Ed.), The Mantle and Core (pp. 363—394). Oxford: Elsevier.

Walter, M. J. (1998). Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. Journal of Petrology, 39(1), 29—60.

Wyllie, P. J. (1977). Effects of H2O and CO2 on magma generation in the crust and mantle. Journal of the Geological Society, 134, 215—234.

Wyllie, P. J., & Ryabchikov, I. D. (2000). Volatile components, magmas, and critical fluids in upwelling mantle. Journal of Petrology, 41(7), 1195—1205. rology/41.7.1195.

Creative Commons License
Licensed under a Creative Commons Attribution 4.0 International License.

Flag Counter