Extraction of lineaments and faults using gravity second horizontal derivative data obtained using Fourier transform

E. E. Epuh, E. O. Joshua


Linear anomalies are important in the interpretation of gravity data because they indicate some important structural features. Gravity anomalies obtained from horizontal derivatives generally reflect lineaments and faults or compositional changes which can describe structural trends of a region. This study involves the delineation of the Gongola basin structural trend based on the convolution between the Fourier kernel obtained from the second horizontal derivative (SHD) of the truncated horizontal plate model (THPM) and the gravity anomaly. The Fourier kernel for the second horizontal derivative was obtained through the application of Fourier transform over the expression of a Bouguer slab with exponential density contrast variation. The weighting density distribution is obtained through the determination of the mean depth perturbed by interfaces. The edges were identified by the closed maximum in the SHD gravity map. The results show that the region’s Bouguer gravity is characterized by elongated SE-NE negative gravity anomaly corresponding to a collapsed structure associated with a granitic intrusion beneath the region, limited by the fault systems. This was clearly evident on an isostatic residual gravity map. The horizontal gradients of the Bouguer gravity anomaly data from the basin defined the edges, lineaments and faults structures very clearly. Major and minor lineaments derived from the SHD map were transposed on the isostatic residual map. These features led to the production of the structural map of the study area. The NE-SE and E-W trending lineaments were interpreted as fault (strike-slip wrench) systems. The steep gradients evident in the gradient maps are reflection of sharp discontinuities or interfaces between basement blocks of contrasting properties, such as: fault, basement shear zones and intrusive contacts. The tectonic information brought about by the distribution of the lineaments was corroborated by the 2D gravity model of the basin. These models and fault map will complement the selection of the promising areas for detailed hydrocarbon mapping.


second horizontal derivative; Fourier transform; Bouguer anomaly; lineament; faults

Full Text:



Abubakar, Y. I, Umegu, M. N., & Ojo, S. B. (2010). Evolution of Gongola Basin Upper Benue Trough Northeastern Nigeria. Asian Journal of Earth Sciences, 3(2), 62―72. doi: 10.3923/ajes.2010.62.72.

Akande, S. O, Ojo, O. J, Erdtmann, B. D. & Hetenyi, M. (1998). Paleoenvironments, Source Rock potential and thermal maturity of the Upper Benue Rift Basins, Nigeria. Implications for Hydrocarbon Exploration. Organic Geochemistry, 29(1-3), 531—542.

Avbovbo, A. A, Ayoola, E. O. & Osahon, G. A. (1986). Depositional and Structural Styles in the Chad basin of Northeastern Nigeria. AAPG Bulletin, 70(12), 1787—1798.

Aydogan, D. (2011). Extraction of Lineaments from gravity anomaly maps using that gradient calculation: Application to Central Anatolia. Earth, Plants and Space, 63(8), 903—913.

Aydogan, D. (2007). Processing the Bouguer anomaly map of Biga and the surrounding area by the Cellular Neural Network: Application to the southwestern Marmara region. Earth, Planets and Space, 59(4), 201—208.

Blakely, R. J., & Simpson, R. W. (1986). Approximating edges of source bodies from magnetic or gravity anomalies. Geophysics, 51(7), 1494—1498.

Benkhelil, J. (1982). The Origin and Evolution of the cretaceous Benue Trough (Nigeria). Journal of African Earth Science, 8(2-4), 251—282.

Benkhelil, J. & Robineau, B. (1983). Is the Benue Trough a rift? Bulletin of Central Research and Exploration Production. Elf-Aquitaine, 7, 315—321.

Benkhelil, J. (1989). The Origin and Evolution of the cretaceous Benue Trough (Nigeria). Journal of African Earth Science, 8(2-4), 251—282.

Boschetti, F. (2005). Improved edge detection and noise removal in gravity maps via the use of gravity gradients. Journal of Applied Geophysics, 57(3), 213—225.

Boschetti, F., Hornby, P., & Horowitz, F. G. (2001). Wavelet based inversion of gravity data. Exploration Geophysics, 32(1), 48―55.

Carter, J. D, Barber, W., Tait, A. E, Jones, J. P. (1963). The Geology of part of Adamawa, Bauchi and Borno Provinces in North Eastern Nigeria. Geological Survey of Nigeria Bulletin, 30, 35—53.

Canny, J. (1986). A computational approach to edge detection. IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-8(6), 679—698. doi: 10.1109/TPAMI.1986.4767851.

Chakravarthi, V. (2008). Gravity inversion of 2.5D faulted beds using depth-dependent density. Current Science, 95(11), 1618—1622.

Cooper, G. R. J., & Cowan, D. R. (2006). Enhancing potential field data using filters based on the local phase. Computers & Geosciences, 32(10), 1585—1591.

Cooper, G. R. J., & Cowan, D. R. (2008). Edge enhancement of potential-field data using normalized statistics. Geophysics, 73(3), H1—H4.

Cordell, L. (1973). Gravity Analysis Using an Exponential Density-Depth Function. Journal of Geophysics, 38(4), 684—690.

Cordell, L., & Grauch, V. J. S. (1985). Mapping basement magnetization zones from aeromagnetic data in the San Juan Basin, New Mexico. In W. J. Hinze (Ed.), The utility of regional gravity and magnetic anomaly maps (pp. 181—197). Society of Exploration Geophysicists.

Fairhead, J. D., & Binks, R. M. (1991). Differential Opening of the Central and South Atlantic Oceans and the Opening of the West Africa Rift System. Tectonophysics, 187(1-3), 191—203.

Fairhead, J. D., Green, C. M., Masterton, S. M., & Guiraud, R. (2013). The role that plate tectonics, inferred stress changes and stratigraphic unconformities have on the evolution of the West and Central African Rift System and the Atlantic continental margins. Tectonophysics, 594, 118―127.

Fedi, M., & Florio, G. (2001). Detection of potential fields source boundaries by enhanced horizontal derivative method. Geophysical Prospecting, 49(1), 40—58. doi: 10.1046/j.1365-2478.2001.00235.x.

Freeth, S. J. (1984). How many rifts are there in West Africa? Earth and Planetary Science Letters, 67(2), 219—227.

Genik, G. J. (1993). Petroleum Geology of cretaceous-tertiary rift basins in Niger, Chad, and Central African Republic. American Association of Petroleum Geologists Bulletin, 77, 1405—1434.

Grant, N. K. (1971). South Atlantic, Benue Trough and Gulf of Guinea Cretaceous Tripple junction. Geolological Society of American Bulletin, 82(8), 2395—2298.[2295:SABTAG]2.0.CO;2.

Grant, F. S., & West, G. F. (1987). Interpretation Theory in Applied Geophysics. Toronto: McGrawhill Book Company.

Grauch, V. J. S., & Cordell, L. (1987). Limitations of determining density or magnetic boundaries from the horizontal gradient of gravity or pseudogravity data. Geophysics, 52(1), 118—121.

Hornby, P., Boschetti, F., & Horowitz, F. (1999). Analysis of potential field data in the wavelet domain, Geophysical Journal International, 137(1), 175—196.

Hsu, S. K, Sibuet, J. C., & Shyu, C. T. (1996). High-resolution detection of geologic boundaries from potential field anomalies: an enhanced analytic signal technique. Geophysics, 61(2), 373—386.

Lunscher, W. H. H. J. (1983). The asymptotic optimal frequency domain filter for edge detection. IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-5(6), 678—679.

Klingele, E. E., Marson, I., & Kahle, H.-G. (1991). Automatic interpretation of gravity gradient data in two dimension: Vertical gradient. Geophysical Prospecting, 39(3), 407—439.

Mallat, S., & Zhong, S. (1992). Characterization of signals from multiscale edges. IEEE Transactions on Pattern Recognition and Machine Intelligence, 14(7), 710—732. doi: 10.1109/34.142909.

Marcotte, D. L., Hardwick, C. D., & Nelson, J. B. (1992). Automated interpretation of horizontal magnetic gradient profile data. Geophysics, 57(2), 288—295. 1.1443242.

McGrath, P. H. (1991). Dip and depth extent of density boundaries using horizontal derivatives of upward continued gravity data. Geophysics, 56(10), 1533—1542.

Modestino, J. W., & Fries, R. W. (1977). Edge detection in noisy images using recursive digital filter. Computer Graphics and Image Processing, 6(5), 409—433.

Moreau, F., Gibert, D., Holschneider, M., & Saracco, G. (1997). Wavelet analysis of potential fields. Inverse Problems, 13, 165—78.

Obaje, N. G. (2009). Geology and mineral resources of Nigeria. S. Bhattacharji, H. J. Neugebauer, J. Reitner, K. Stuwe (Eds.) Springer-Verlag Berlin Heidelberg. doi: 10.1007/978-3-540-92685-6.

Obaje, N. G, Attah, D. O., Opeloye, S. A, & Moumouni, A. (2006). Geochemical Evaluation of the Hydrocarbon Prospects of Sedimentary Basins in Northern Nigeria. Geochemical Journal, 40(3), 227—243.

Obaje, N. G. (1994). Coal Petrography, microfossils and paleoenvironments of Cretaceous Coal measures in the middle Bebue Trough of Nigeria. Tuebingen Univ. (Germany).

Ofodile, M. E. (1976). The Geology of the Middle Benue, Nigeria. Publications from the Palaeontological Institution of the University of Uppsala, 4, 1—166.

Okiwelu, A. A., Okwueze, E. E., Akpan, P. O., & Ude, I. A. (2015). Basin Framework and Basement Structuring of Lower Benue Trough, West Africa based on Regional Magnetic Field Data: Tectonic and Hydrocarbon Implications. Earth Science Research, 4(1), 1—20. doi: 10.5539/esr.v4n1p1.

Olugbemiro, R. O., Ligouis, B., & Abaa, S. I. (1997). The Cretaceous Series in the Chad basin, NE Nigeria: Source Rock Potential and Thermal Maturity. Journal of Petroleum Geology, 20(1), 51—68.

Ologun, J. A., Ogezi, A. E., Ogunmola, J. K., & Alaga, A. T. (2008). The application of remote sensing and GIS techniques in evaluating airborne radiometric anomaly around Wamba Nassarawa Egon area, North Central Nigeria. Niger. J. Space Res., 5, 95—114.

Osazuwa, I. B., Ajakaiye, D. E., & Verheijen, P. J. T. (1981). Analysis of the structure of part of the Upper Benue Rift Valley on the basis of new geophysical data. Earth Evolution Sciences, (2), 126―135.

Petters, S. W. (1978). Stratigraphic evolution of the Benue Trough and its implications for the Upper Cretaceous paleogeography of West Africa. The Journal of Geology, 86(3), 311—322.

Petters, S. W. (1982). Central West African Cretaceous―Tertiary benthic foraminifera and stratigraphy. Palaeontographica Abteilung, 179, 1—104.

Petters, S. W., & Ekweozor, C. M. (1982). Petroleum Geology of the Benue trough and southeastern Chad basin, Nigeria. AAPG Bulletin, 66, 1141—1149.

Rao, D. A., Babu, H. V., & Narayan, P. V. (1981). In-

terpretation of magnetic anomalies due to dikes: The complex gradient method. Geophy-

sics, 46(11), 1572—1578.


Reid, A. B., Allsop, J. M., Granser, H., Millett, A. J., & Somerton, I. W. (1990). Magnetic interpretation in three dimensions using Euler deconvolution. Geophysics, 55(1), 80—91.

Roest, W. R., Verhoef, J., & Pilkington, M. (1992). Magnetic interpretation using the 3-D analytic signal. Geophysics, 57(1), 116—125.

Shanmugam, K. S., Dickey, F. M. & Green, J. A. (1979). An optimal frequency domain filter for edge detection in digital pictures. IEEE Transaction on Pattern Analysis and Machine Intelligence, PAMI-1(1), 37—49. doi: 10.1109/TPAMI.1979.4766874.

Shen, J., & Castan, C. (1986). An optimal linear operator for edge detection. Proceeding Conference on Vision and Pattern Recognition (CUPR) (pp. 109—114).

Trompat, H., Boschetti, F., & Hornby, P. (2003). Improved downward continuation of potential field data. Exploration Geophysics, 34(4), 249—256.

Tukur, A., Samaila, N. K., Grimes, S. T., Kariya, I. I., & Chaanda, M. S. (2015). Two member subdivision of the Bima sandstone, Upper Benue trough, Nigeria: based on sedimentological data. Journal of African Earth Science, 104, 104—158.

Zeng, H., Zhang, Q., & Liu, J. (1994). Location of secondary faults from cross-correlation of the second vertical derivative of gravity anomalies. Geophysical Prospecting, 42(8), 841—854. doi: 10.1111/j.1365-2478.1994.tb00244.x.

Zhang, H., Liu, T., & Yang, Y.-S. (2011). Calculation of gravity and magnetic source boundaries based on anisotropy normalized variance. Chinese Journal of Geophysics, 54(4), 560—567.

Creative Commons License
Licensed under a Creative Commons Attribution 4.0 International License.