On the possible mantle nature of the long-wave Central-European magnetic anomaly

Authors

  • I.K. Pashkevich Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine,
  • M.I. Orlyuk Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • A.V. Marchenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • A.A. Romanets Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • T.A. Tsvetkova Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine
  • I.V. Bugayenko Subbotin Institute of Geophysics of the National Academy of Sciences of Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222288

Keywords:

long-wave magnetic anomaly, magnetic minerals, mantle, slab, fluids, seismotomography

Abstract

This paper presents the results of a comprehensive analysis of geological and geophysical data, carried out to substantiate the existence and nature of transition class of magnetic anomalies produced by the Earth’s core and the lithosphere. This class of anomalies with a wavelength of 2000—4000 km belongs to the overlap region of the geomagnetic field spectra of the core and the lithosphere, and therefore their separation is arbitrary. The original technology of identifying the lithospheric component developed by the authors is based on one of the fundamental principles of geomagnetism — the change in time and space of the Earth’s core field and the stable position of the lithospheric anomalies.

The lithospheric component containing anomalies with a wavelength of more than 2400 km was separated from the main geomagnetic field ВIGRF-12. The subject of our research is the submeridional Central European magnetic anomaly of this class, traced from the northern coast of Europe to the edge of the East Saharan mesocraton in Africa. To substantiate its mantle nature information was analyzed on tectonic position of the anomaly and distribution of local magnetic anomalies in the crust, relief of the Moho discontinuity, thickness of the lower (mafic) crust, average velocities VР of the crystalline crust. The inhomogeneity of the Earth’s crust cannot explain the anomaly under study, and therefore it is of mantle in nature. The distribution of the physical parameters of the crust and the tectonic position of the anomaly indicate the possible presence of a long-lived transregional lithospheric lineament such as a suture zone along its axis.

Generalization of theoretical and experimental data suggests that under certain thermodynamic, reductive-oxidative, and tectonic conditions of the upper mantle, ferrimagnetic minerals (magnetite, hematite, native iron, and alloys of iron with nickel and cobalt) can exist, transform and form again within a wide range of Curie temperatures from 580 °C to 1100 °C. It limitsthe lower boundary of the magnetization stability at a depth of 600—640 km. The most favorable conditions for the origin of such sources are areas of subduction and relics of relatively cold slabs, suture zones and associated with them present-day fluids and plumes. In the area of the anomaly under study, fluids and the Iberian plume were identified from seismic tomographic data, which, in combination with the rise of the bottom of the upper mantle and the presence of inclined high-velocity layers in its low-velocity part, characterize the excited mantle. Thus, the Central European long-wave magnetic anomaly can be interpreted as the total effect of the relicts of primary ferrimagnets formed under the influence of fluidization of the mantle.

References

Borisov, A.A. & Kruglyakova, G.I. (1967). Regional and zonal anomalies of the geomagnetic field in the European part of the USSR. Sovetskaya geologiya, (11), 127-130 (in Russian).

Bugaenko, I.V., Zaets, L.N., & Tsvetkova, T.A. (2015). Velocity typing the middle and lower mantle of Europe. Geofizicheskiy zhurnal, 37(3), 88-101. https://doi.org/10.24028/gzh.0203-3100.v37i3.2015.111104 (in Russian).

Bulmasov, F.L. (1962). Relationship of regional magnetic anomalies of the Siberian platform with the basalt layer of the Earth’s crust. Geologiya i geofizika, (7), 32-46 (in Russian).

Vints, B.D., & Pochtarev, V.I. (1965). Construc-tion of a normal geomagnetic field by calculation. In The present and past Earth’s magnetic field (pp. 79-87). Moscow: Nauka (in Russian).

Gaynanov, A.G. & Solov’ov, O.N. (1963). Nature of magnetic anomalies in the area of transition from the Asian continent to the Pacific Ocean. Doklady Akademii nauk SSSR, 151(6), 64-81 (in Russian).

Gantimurov, A.F. (1982). Fluid mode of iron-silicon systems. Novosibirsk: Nauka, 69 p. (in Russian).

Genshaft, Yu.S., Tsel’movich, V.A., & Gapeev, A.K. (2003). Crystallization of high-titanium ferrous spinel under PT conditions of the upper mantle. Fizika Zemli, (3), 71-75 (in Russian).

Kadik, A.A., Lukanin, O.A. & Portnyagin, A.L. (1990). Formation magma during the upward motion of mantle matter: temperature regime and composition of melts formed during adiabatic decompression of mantle ultrabasites. Geokhimiya, (9), 1263-1276 (in Russian).

Kvasnitsa, I.G., & Kosovskiy, Ya.I. (2006). Native iron in basalts of Volyn (Ukraine). Proc. of the IV International Mineralogical Seminar «Theory, history, philosophy and practice of Mineralogy», Syktyvkar, Komi Republic, Russia, May 17-20, 2006 (pp. 122-123). Syktyvkar: Geoprint (in Russian).

Kolesova, V.I., Petrova, A.A., Pochtarev, V.I., & Efendieva, M.A. (1981). Study of large regional magnetic anomalies in the USSR. In Anomalies of the geomagnetic field and deep structure of the Earth’s crust (pp. 30-38). Kiev: Naukova Dumka (in Russian).

Kochergin, E.V., Pavlov, Yu.A., & Sergeev, K.F. (1980). Geomagnetic anomalies of the Kuril and Ryukyu island systems. Moscow: Nauka, 127p. (in Russian).

Krutikhovskaya, Z.A. (1976). The problem of creating a magnetic model of the Earth’s crust in ancient shields. Geofizichesskiy sbornik AN USSR, (73), 3-29 (in Russian).

Krutikhovskaya, Z.A., Pashkevich, I.K., & Silina, I.M. (1982). Magnetic model and structure of the Earth’s crust of the Ukrainian Shield. Kiev: Naukova Dumka, 216 p. (in Russian).

Letnikov, F.A., Karpov, I.K., Kiselev, A.I., & Shkandriy, B.O. (1977). Fluid regime of the Earth’s crust and upper mantle. Moscow: Nauka, 214 p. (in Russian)

Lykasov, A.A., Ryss, G.M., & Vlasova, I.S., (2013). Phase transformations during the reduction of sulphide copper smelting slag by the products of gasification of carbonaceous reducing agents at a temperature of 1320 K. Vestnik YuUrGU. Seriya «Metallurgiya», 13(1), 24-28 (in Russian).

Karataev, G.I. (Ed.). (1990). Magnetic model of the lithosphere of Europe. Kiev: Naukova Dumka, 186 р. (in Russian).

Marakushev, A.A., & Genkin, A.D. (1972). Thermodynamic conditions for the formation of metal carbides in connection with their presence in hyperbasites and in copper-nickel sulfide ores. Vestnik MGU. Geologiya, (5), 7-27 (in Russian).

Mel’nik, Yu.P., & Stebnovskaya, Yu.M. (1976). The nature of the distribution of iron and the conditions for the formation of ferromagnetic minerals. In Magnetic anomalies of the Earth’s depths (pp. 64-73). Kiev: Naukova Dumka, (in Russian).

Orlyuk, M.I. (1984). Magnetic model of the Earth’s crust of the Volyn-Podolsk plate of the East European platform and its petrological-tectonic interpretation. In Study of regional magnetic anomalies in platform areas (pp. 152-162). Kiev: Naukova Dumka (in Russian).

Orlyuk, M.I. (1999). Magnetic model of the Earth’s crust southwest of the East European platform. Doctor’s thesis. Kiev. 404 p. (in Russian).

Orlyuk, M.I. (2000). Spatial and spatio-temporal magnetic models of different-rank structures of the lithosphere of the continental type. Geofizicheskiy zhurnal, 22(6), 148-165 (in Russian).

Orlyuk, M.I., Marchenko, A.V., & Romenets, A.A. (2017). Spatial-temporeral changes in the geomagnetic field and seismisity. Geofizicheskiy zhurnal, 39(6), 32-41. https://doi.org/10.24028/gzh.0203-3100.v39i6.2017.116371 (in Russian).

Orlyuk, M.І., Marchenko, A.V., & Romenets, A.O. (2016a). Earth’s seismicity and secular changes of its magnetic field. Visnyk Kyi’vs’kogo Nacional’nogo Universytetu. Geologiya, (75), 50-54 (in Ukrainian).

Orlyuk, M.І., Marchenko, A.V., & Romenets, A.O. (2016b). Earth's seismicity and secular changes of its magnetic field. Materials of VI International Conference «Geophysical technologies of geological media predicting and monitoring» 20-23 September 2016, Lviv (pp. 202-204) (in Ukrainian).

Orlyuk, M.I., & Pashkevich, I.K. (1993). Theoreti-cal magnetic models of continental paleorifts and island arcs. Geofizicheskiy zhurnal, 15(5), 32-41 (in Russian).

Orlyuk, M.I., Pashkevych, I.K., Marchenko, A.V., & Romenets, A.O. (2019). The crustal-mantle(?) nature of the long-wave Central European magnetic anomaly. Materials of VII International Conference «Geophysics and geodynamics: prediction and monitoring of geological medium», 24-26 September 2019, Lviv (pp. 143-146) (in Ukrainian).

Pashkevich, I.K. (1976). Methods of separati-on and interpretation of regional magnetic anomalies (for example, Ukrainian Shield). Geofizicheskiy sbornik, (73), 30-36 (in Russian).

Pecherskiy, D.M. (Ed.). (1994). Petromagnetic model of the lithosphere. Kiev: Naukova Dumka, 176 р. (in Russian).

Pecherskiy, D. M. (2016). Occurrence of metal iron inside the planets. Geofizicheskiy zhurnal, 38(5), 3-32. https://doi.org/10.24028/gzh.0203-3100.v38i5.2016.107817 (in Russian).

Pochtarev, V.I., & Golub, D.P. (1976). Large regional magnetic anomalies (on the example of the South Caspian). In Magnetic anomalies of the Earth’s depths (pp. 151-157). Kiev: Naukova Dumka (in Russian).

Pushcharovskiy, Yu.M., & Pushcharovskiy, D.Yu. (2010). Geology of the Earth’s Mantle. Moscow: Geos, 138 p. (in Russian).

Semenov, A.S. (1974). The magnetic shell of the Earth. Vestnik Leningradskogo universiteta. Geologiya i geografiya, (8), 40-43 (in Russian).

Sorokhtin, O.G., & Ushakov, S.A. (2002). Earth’s development. Moscow: Publishing house MGU, 506 p. (in Russian).

Starostenko, V.I., Kendzera, A.V., Bugaenko, I.V., & Tsvetkova, T.A. (2011). The earthquake in L’Aquile and the features of the three-dimen-sional P-velocity structure of the mantle beneath the Adriatic plate and its environment. Geofizicheskiy zhurnal, 33(4), 62-73. https://doi.org/10.24028/gzh.0203-3100.v33i4.2011.116896 (in Russian).

Starostenko, V.I., Kendzera, A.V., Bugaenko, I.V., & Tsvetkova, T.A. (2013). Intermediate earthquakes of the Vrancea zone and high-speed structure of the mantle in Eastern Europe. Geofizicheskiy zhurnal, 35(3), 1-45. https://doi.org/10.24028/gzh.0203-3100.v35i3.2013.116392 (in Russian).

Teylor, S.R., & MacLennan, C.J. (1988). Continental crust, its composition and evolution. Moscow: Mir, 384 p. (in Russian).

Bogdanov, N.A., & Koronovskiy, N.V. (Eds.). (1994). Tectonic map of the Mediterranean Sea, 1 : 5 000 000. Federal Service of Geodesy and Cartography of Russia. Moscow. Retrieved from http//www.miningenc/ru/e/evropa.html (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2019). The main geodynamic border and seismic visualization of plumes under the East European Platform. Geofizicheskiy zhurnal, 41(1), 108-136. https://doi.org/10.24028/gzh. 0203-3100.v41i1.2019.158868 (in Russian).

Tsvetkova, T.A., Bugaenko, I.V., & Zaets, L.N. (2015). Structure of low-speed regions in the mantle of northern Europe. Trudy Karelskogo nauchnogo tsentra RAN, (7), 106-126. https://doi.org/10.17076/geo157 (in Russian).

Shteynberg, D.S., & Lagutina, M.V. (1984). Carbon in ultrabasites and basites. Moscow: Nauka, 110 p. (in Russian).

Yanovskiy, B.A. (1978). Earth magnetism. Moscow: Nauka, 580 p. (in Russian)

Artemieva, I.M., & Thybo, H. (2013). EUNAseis: A seismic model for Moho and crustal structure in Europe, Greenland, and North Atlantic region. Tectonophysics, 609, 97-153. https://doi.org/10.1016/j.tecto.2013.08.004.

Artemieva, I.M., Thybo, H., & Kaban, M. (2006). Deep Europe today: geophysical synthesis of the upper mantle structure and lithospheric processes over 3.5 Ga. Geological Society Special Publication, 32(1), 11-41. https://doi.org/10.1144 GSL.MEM.2006.032.01.02.

Begg, G.C., Griffin, W.L., Natapov, L.M., O’Re-illy, S.Y., Grand, S.P., O’Neill, C.J., Hronsky, J., Djomani,Y.P., Swain, C.J., Deen, T., & Bowden, P. (2009). The lithospheric architecture of Africa: Seismic tomography, mantle petrology, and tectonic evolution. Geosphere, 5(1), 23-50. https://doi.org/10.1130/GES00179.1

Blakely, R.J., Brocker, T.M., & Wells, R.E. (2005). Subduction-zone magnetic anomalies and implications for hydrated forearc mantle. Geology, 33(6), 445-448. https://doi.org/10.1130/G21447.1

Caporali, A., Zurutuza, J., Bertoccoa, M., Ishchenko, M., & Khoda, O. (2019) Present Day Geokinematics of Central Europe. Journal of Geodynamics, 132, 1-10. https://doi.org/10.1016/j.jog.2019.101652.

Drukarenko, V., Orlyuk, M., & Shestopalova, O. (2019) Magnetomineralogical substantiation of magnetization of the rocks of the lower crust and upper mantle. XIIIth International Scientific Conference «Monitoring of Geological Processes and Ecological Condition of the Environment», 12-15 November 2019, Kyiv, Ukraine. Conference CD-ROM Proce-edings, 5 p. https://doi.org/10.3997/2214-4609.01903209.

Dunlop, D. (2014). High-temperature susceptibility of magnetite: a new pseudo-single-domain effect. Geophysical Journal International, 199, 707-716. https://doi.org/10.1093/gji/ggu247.

Dunlop, D., Ozdemir, O., & Costanzo-Alvarez, V. (2010). Magnetic properties of rocks of the Kapuskasing uplift (Ontario, Canada) and origin of long-wavelength magnetic anomalies. Geophysical Journal International, 183, 645-658. https://doi.org/10.1111/j.1365-246X.2010.04778.x.

Dyment, J., Lesur, V., Hamoudi, M., Choi, Y., Thebault, E., & Catalan, M. (2016). World Digital Magnetic Anomaly Map version 2.0. Abstract GP13B-1310 presented at the 2015 AGU Fall Meeting, San Francisco, Calif. Retrieved from http://www.wdmam.org.

Faccenna, C., Becker, T.W., Lucente, F.P., Joli-vet, L. & Rosseti, F. (2001). History of subduction and back-arc extension in the Central Mediterranean. Geophysical Journal International, 145, 809-820. https://doi.org/10.1046/j.0956-540x.2001.01435.x.

Fedorova, N.V., & Shapiro, V.A. (1998). Reference field for the airborne magnetic data. Earth, Planets and Space, 50, 397-404. https://doi.org/10.1186/BF03352126.

Ferré, E.C., Friedman, S.A, Martín-Hernández, F., Feinberg, J.M., Till, J.L., Ionov, D.A., & Conder, J.A. (2014). Eight good reasons why the uppermost mantle could be magnetic. Tectonophysics, 624-625, 3-14. https://doi.org/10. 1016/j.tecto.2014.01.004.

Frost, D.J., & McCammon, C.A. (2008). The redox state of Earth’s mantle. Annual Review of Earth and Planetary Sciences, 36, 389-420. https://doi.org/10.1016/j.chemgeo.2015.07.030ff.

Geyko, V.S. (2004). A general theory of the seismic travel-time tomography. Геофиз. журн. 2004. Т. 26. № 1. C. 3-32.

Goncharov, A.G., Ionov, D.A., Doucet, L.S., Pokhilenko, L.N. (2012). Thermal state, oxygen fugacity and C-O-H fluid speciation in cratonic lithospheric mantle: new data peridotite xenoliths from the Udachnaya kimberlite, Siberia. Earth and Planetary Science Letters, 357-358, 99-110. https://doi.org/10.1016/j.epsl.2012.09.016.

Handy, M.R., Schmid, S.M., Bousquet, R., Kissling, E., Bernoulls, D. (2010). Reconciling plate tectonic reconstructions of Alpine Tethys with the geological-geophysical record of spreading and subduction in the Alps. Earth-Science Reviews, 102(3-4), 121-158. https://doi.org/10.1016/j.earscirev.2010.06.002.

Heuer, B., Geissler, W., Kind, R., & Kдmpf, H. (2006). Seismic evidence for asthenosphericupdoming beneath the western Bohemian Massif, central Europe. Geophysical Research Letters, 33, L05311. https://doi.org/10.1029/2005GL025158.

Idoko, M.C., Conder, J.A., Ferrй, E.C., & Fili-berto, J. (2019). The potential contribution to long wawelength magnetic anomalies from the lithospheric mantle. Physics of the Earth and Planetary Interiors, 292, 21-28. https://doi.org/10.1016/j.pepi.2019.05.002.

Jarvis, G., & Lowman, J. (2007). Survival times of subducted slab remnants in numerical models of mantle flow. Earth and Planetary Science Letters, 260, 23-36. https://doi.org/10.1016/jepsl.2007.05.009.

Kiss, J., Prácser, E., Szarka, L., & Ádám, A. (2010). Magnetic phase transition and the magnetotellurics. Magyar geofizika, 51(2), 1-15. https://doi.org/10.3969/j.issn.0001-5733.2010.03.015.

Kletetschka, G., Wasilewski, P., & Taylor, P. (2002). The role of hematite-ilmenite solid solution in the production of magnetic anomalies in ground- and satellite-based data. Tectonophysics, 347, 167-177. https://doi.org/10.1016/S0040-1951(01)00243-8.

Knafelc, J., Filiberto, J., Ferré, E.C., Conder, J.A., Costello, L., Crandall, J.R., Darby Dyar, M., Friedman, S.A., Hummer, D.R., & Schwenzer, S.P. (2019).The effect of oxidation on the mineralogy and magnetic properties of olivine. American Mineralogist, 104, 694-702. https://doi.org/10.2138/am-2019-6829.

Kupenko, I., Aprilis, G., Vasiukov, D.M., McCammon, C., Chariton, S., Cerantola, V., Kantor, I., Chumakov, A.I., Rüffer, R., Dubrovinsky, L. & Sanchez-Valle, C. (2019). Magnetism in cold subducting slabs at mantle transition zone depths. Nature, 570, 102-106. https://doi.org/10.1038/s41586-019-1254-8.

Malvoisin, B., Carlut, J. & Brunet, F. (2012). Serpentinization of oceanic peridotites: 1. A high-sensitivity method to monitor magnetite production in hydrothermal experiments. Journal of Geophysical Research, 117, B01104. https://doi.org/10.1029/2011JB008612.

Mandea, M., & Korte, M. (Eds.). (2011). Geomagnetic Observations and Models (IAGA Special Sopron Book Series. Vol. 5), 343 p. http://doi.org/10.1007/978-90-481-9858-0.

McEnroe, S.A., Robinson, P., Church, N., Purucker, M. (2018). Magnetism at Depth: A View from an Ancient Continental Subduction and Collision Zone. Geochemistry, Geophysics, Geosystems, 19, 1123-1147. https://doi.org/10.1002/2017GC007344.

Milano, M., Fedi, M., & Fairheads, D. (2019). Joint analysis of the magnetic field and total gradient intensity in central Europe. Solid Earth, 697-712. https://doi.org/10.5194/se-10-697-2019.

Pashkevich, I.K., & Orlyuk, M.I. (1997). Magnetic model of the lithosphere and some problems of Geomagnetic Reference Field. Abstracts 8th Scientific Assembly of IAGA, Uppsala, 485 p.

Purucker, M., & Whaler, W. (2007). Crustal magnetism, in Geomagnetism. In: M. Kono (Ed.), Treatise on Geophysics (Vol. 5. Ch. 6, pp. 195-237). Amsterdam: Elsevier. https://doi.org/10.1007/s11214-010-9667-6.

Riddihough, R.P. (1972) Regional magnetic anomalies and geology in Fennoscandia: a discussion. Canadian Journal of Earth Sciences, 9(3), 219-232. https://doi.org/10.1139/e72-018.

Spakman, W., & Wortel, R. (2004). A Tomogra-phic View on Western Mediterranean Geodynamics. In: W. Cavazza, F. Roure, W. Spakman, G.M. Stampfli, P.A. Ziegler (Eds.), The TRANSMED Atlas. The Mediterranean Region from Crust to Mantle (pp. 31-52). Berlin, Heidelberg: Springer. https://doi.org/10.1007/978-3-642-18919-7_2

Thébault, E., Finlay, C.C., Beggan, C.D., Alken, P., Aubert, J., Barrois, O., Bertrand, F., Bondar, T., Boness, A., Brocco, L., Canet, E., Chambodut, A., Chulliat, A., Coïsson, P., Civet, F., Du, A., Fournier, A., Fratter, I., Gillet, N., Hamilton, B., Hamoudi, M., Hulot, G., Jager, T., Korte, M., Kuang, W., Lalanne, X., Langlais, B., Léger, J.M., Lesur, V., & Lowes, F.J. (2015). International Geomagnetic Reference Field: the twelfth generation. Earth, Planets and Space, 67, 79. https://doi.org/10.1186/s40623-015-0228-9.

Thébault, E., Purucker, M., Whaler, K.A. & Sabaka, T.J. (2010). The Magnetic Field of the Earth’s Lithosphere. Space Science Reviews, 155, 95-127. https://doi.org/10.1007/s11214-010-9667-6.

Van der Meer, D.G., Van Hinsbergen, D.J.J., & Spakman, W. (2018). Atlas of the Underworld: slab remnants in the mantle, their sinking history, and a new outlook on lower mantle viscosity. Tectonophysics, 723, 309-448. https://doi.org/10.1016/j.tecto.2017.10.004.

Wasilewski, P.J., & Warner, R.D. (1988). Magnetic petrology of deep crustal rocks - Ivrea Zone, Italy. Earth and Planetary Science Letters, 87, 347-361. https://doi.org/10.1016/0012-821X(88)90022-2.

Tumanian, M., Frezzotti, M.L., Peccerillo, A., Brandmayr, E., & Panza, G.F. (2012). Thermal structure of the shallow upper mantle beneath Italy and neighbouring areas: Correlation with magmatic activity and geodynamic significance. Earth-Science Reviews, 114(3-4), 369-385. https://doi.org/10.1016/j.earscirev.2012.07.002.

Published

2020-12-24

How to Cite

Pashkevich, I., Orlyuk, M., Marchenko, A., Romanets, A., Tsvetkova, T., & Bugayenko, I. (2020). On the possible mantle nature of the long-wave Central-European magnetic anomaly. Geofizicheskiy Zhurnal, 42(6), 100–130. https://doi.org/10.24028/gzh.0203-3100.v42i6.2020.222288

Issue

Section

Articles