Magnetic prospecting and rock magnetic study of soils and archaeological objects on the Late Roman time sites near Komariv in Middle Transnistria


  • K.M. Bondar Kyiv National University named after Taras Shevchenko, Ukraine
  • O.V. Petrauskas Institute of Archeology of the National Academy of Sciences of Ukraine, Ukraine
  • R.V. Khomenko Kyiv National University named after Taras Shevchenko, Ukraine
  • S.A. Popov Kyiv National University named after Taras Shevchenko, Ukraine



magnetic survey, rock magnetic properties, magnetic modeling, Komariv, Late Roman time


The paper presents the outcome of the magnetic survey at the settlement and cemetery of the production center of the 3rd—5th centuries, Komariv (Khotyn district, Chernivtsi region), which is located on the right bank of the Dniester. The settlement has about seventy anomalies that may have an archaeological origin. The archaeological study of individual anomalies has confirmed, as expected, the reliability of geophysical interpretation of thermal structures (kilns, furnaces) and living and production dugouts deepened into the loess parent rock.

Magnetic imaging at the cemetery showed about eight tens of local anomalies with an intensity of 1.5—4.5 nT. Excavations of some anomalies revealed the Early Iron Age dugout and two Late Roman graves. However, the other two excavated graves did not cause disturbance of magnetic field.

Laboratory measurements of magnetic susceptibility, natural remanent magnetization and other concentration-dependent and grain-size-dependent parameters of the ferromagnetic phase, as well as magnetic mineralogy examination have shown that grave pits, which appeared on a magnetic map, are refilled almost exclusively with humus soil material. Magnetic modeling proved graves can create measured anomalies if their magnetization is equal to the magnetization of the humus horizon of the soil. Thus, these grave pits were left open and gradually refilled with moist soil material. In particular, conditions have been created for the formation of detrital remanence.

When restoring the spatial structure of Komariv sites based on magnetic prospecting results, it is necessary to take into account probable multilayered structure of monuments, geomorphological features of the area, which can be misinterpreted as archeological objects, and the fact that important examples of ancient architecture constructed of non-magnetic materials and grave pits refilled immediately after digging will be absent on magnetic maps.


Bondar, K.M., Daragan, M.M., Prilukov, V., Polin, S.V., Tsiupa, I.V., & Didenko, S.V. (2019). Magnetometry of the Scythian burial ground Katerinovka in the Lower Dnieper region. Geophysical Journal, 41(3), 134—152. (in Ukrainian).

Bondar, K.M., & Matviishyna, Zn.M. (2018). Mag¬netic properties of buried Greyzem Haplic un¬der the rampart of Eastern fortification of Bilsk hillfort. Phenomenon of Bilsk hillfort — 2018: In memory of P.Ya. Gavrysh (1956—2018): col¬lection of papers (pp. 94—100) (in Ukrainian).

Koshelev, I. (2005) Magnetic prospection of archaeological sites. Kiev. 255 p. (in Russian).

Orlyuk, M., Rolle, R., Romenets, A., Ulrich, B., & Zollner, H. (2016). Microscopic survey of the Great Belsky Settlement Scythian time, Poltava region. Geophysical Journal, 38(5), 25—39. (in Russian).

Petrauskas, O.V. (2014). Destroyed graves on Chernyakhiv culture burial grounds from the Dnieper area — analysis of archaeological structure. In From Wends to Rus (pp. 125—152) (in Russian).

Petrauskas, O.V., & Shishkin, R.G. (2020) Research of the craft factor of Chernyakhiv culture in Komariv at Transnistria. In Archaeological Researches in Ukraine in 2018 (pp. 251—252). Kyiv: Publ. of the Institute of Archeology of the National Academy of Sciences of Ukraine (in Ukrainian).

Petrauskas, O.V., & Avramenko, M.O. (2020) Investigation of Chernyakhiv culture burial ground Komariv-1. In Archaeological Researches in Ukraine in 2018 (pp. 250—251). Kyiv: Publ. of the Institute of Archeology of the National Academy of Sciences of Ukraine (in Ukrainian).

Smishko, M.Yu. (1964). Settlements of III-IV centuries AD with traces of glass production near the village of Komariv in Chernivtsi re¬gi¬on. Materials and investigations on the ar¬cheo¬logy of Ciscarpathia and Volyn, (5), 67—80 (in Ukrainian).

Shchapova, Yu.L. (1978). Workshop for the production of glass near the village of Komarovo. Soviet archaeology, (3), 230—242 (in Russian).

Becker, H. (2001). Duo- and Quadro-sensor Configuration for High Speed/High Resolution Magnetic Prospecting with Caesium Mag¬ne¬tometer. In H. Becker, J.W.E. Fassbinder (Eds.), Magnetic Prospecting in Archaeological Sites (pp. 20—25). Munich: ICOMOS.

Bevan, B.W. (2016). Forward magnetic models: Creation and calculation. Geosight. http://doi:10.13140/RG.2.1.2296.0242/1.

Chen, T., Xu, H., Xie, Q., Chen, J., Ji, J., & Lu, H. (2005). Characteristics and genesis of maghemite in Chinese loess and paleosols: mechanism for magnetic susceptibility enhancement in paleosols. Earth and Planetary Science Letters, 240(3-4), 790—802. https://doi:10.1016/j.epsl.2005.09.026.

Churchman, G.J., & Lowe, D.J. (2012). Alteration, formation, and occurrence of minerals in soils. In P.M. Huang, Y. Li, M.E. Sumner (Eds.), Handbook of Soil Sciences, Properties and Processes (Vol. 1, pp. 20.1—20.72). CRC Press (Taylor & Francis), Boka Raton, FL.

Clark, A. (1996). Seeing Beneath the Soil: Prospecting Methods in Archaeology, 2nd ed. Batsford: London, UK.

Dearing, J.A., Dann, R.J.L., Hay, K., Lees, J.A., Lo¬veland, P.J., Maher, B.A., & O’Grady, K. (1996). Frequency dependent susceptibility measurements of environmental materials. Geo¬physical Journal International, 124, 228—240.

Dearing, J. (1999). Magnetic susceptibility. In J. Walden, F. Oldfield, J.P. Smith (Eds.), Environmental Magnetism: A Practical Guide (pp. 35— 63). Technical Guide No 6. Quaternary Research Association, London.

Dunlop, D.J., & Özdemir, Ö. (1997). Rock Magnetism. Fundamentals and Frontiers. Geological Magazine, 135(2), 287—300. 10.1017/S0016756898218437.

Evans, M., & Heller, F. (2003). Environmental Magnetism: Principles and Applications of Enviromagnetics. San Diego.

Fassbinder, J.W.E. (2010). Magnetometerprospek¬tion des neolithischen Erdwerkes von Alt¬heim. Das archäologische Jahr in Bayern, 26—29.

Fassbinder, J.W.E. (2017). Magnetometry for Archaeology. In Encyclopedia of Geoarchaeology (pp. 499—514). Springer Verlag.

Fassbinder, J.W.E. (2015). Seeing beneath the far¬mland, steppe and desert soil: magnetic pro¬spec¬ting and soil magnetism. Journal of Ar¬cha¬eological Science, 56, 85—95. 10.1016/j.jas.2015.02.023.

Fassbinder, J.W.E., & Gorka, T. (2009). Vermessen? Das R€omerkastell burgsalach, Landkreis Weißenburg-Gunzenhausen, Mittelfranken. Das archäologische Jahr in Bayern, 76—79.

Fassbinder, J.W.E., & Irlinger, W.E. (1998). Magnetometerprospektion eines endneolithischen Grabenwerkes bei Riekofen, Lkr. Regensburg. Beiträge zur Archäologie in der Oberpfalz, (2), 47—54.

Fassbinder, J.W.E., & Stanjek, H. (1993). Occurrence of bacterial magnetite in soils from archaeological sites. Archaeologia Polona, 31, 117—128.

Garcia-Garcia, E., Andrews, J., Iriarte, E., Sala, R., Aranburu, A., Hill, J., & Agirre-Mauleon, J. (2017). Geoarchaeological Core Prospection as a Tool to Validate Archaeological Interpretation Based on Geophysical Data at the Roman Settlement of Auritz/Burguete and Aurizberri/Espinal (Navarre). Geosciences, 7(4), 104.

Garcia-Garcia, E., Mtz. Txoperena, J.M., Sala, R., Aranburu, A., & Agirre-Mauleon, J. (2016). Magnetometer Survey at the Newly-discovered Roman City of Auritz/Burguete (Navarre). Results and Preliminary Archaeological Interpretation. Archaeological Prospection, 23, 243—256.

Gater, J., & Gaffney, C. (2003). Revealing the Buried Past: Geophysics for Archaeologists. Tempus: Stroud, UK.

Gorka-Kostrubiec, B., Teisseyre-Jelenska, M., & Dytłow, S.K. (2016). Magnetic properties as indicators of Chernozem soil development. Catena, 138, 91—102.

Hanesch, M., Stanjek, H., & Petersen, N. (2006). Thermomagnetic measurements of soil iron minerals: the role of organic carbon. Geophysical Journal International, 165, 53—61. doi:10.1111/j.1365-246X.2006.02933.x.

Hrouda, F. (2011). Models of frequency-dependent susceptibility of rocks and soils revisited and broadened. Geophysical Journal International, 187(3), 1259—1269.

IUSS Working Group WRB. (2015). World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome.

Jeleńska, M., Hasso-Agopsowicz, A., Kądziałko-Hofmokl, M., Sukhorada, A., Bondar, K., & Matviishinа, Zh. (2008). Magnetic iron oxides occurring in chernozem soil from Ukraine and Poland as indicators of pedogenic processes. Studia Geophysica et Geodaetica, 52 255—270.

Jeleńska, M., Hasso-Agopsowicz, A., Kopcewicz, B., Sukhorada, A., Bondar, (Tyamina) K., Kądziałko-Hofmokl, M., & Matviishinа, Zh. (2004). Magnetic properties of the profiles of polluted and non-polluted soils. A case study from Ukraine. Geophysical Journal International, 159(1), 104—116.

Jordanova, N. (2016). Soil Magnetism. 466 p. Academic Press.

Jordanova, D., & Jordanova, N. (2016). Thermomagnetic behavior of magnetic susceptibility heating rate and sample size effects. Frontiers in Earth Science, 3, 15.

Koenigsberger, J.G. (1930). Größenverhältnis von remanentem zu induziertem Magnetismus in Gesteinen, Größe und Richtung des remanenten Magnetismus. Zeitschrift für Geophysik, 6, 190—207.

King, J., Banerjee, S.K., Marvin, J., & Özdemir, Ö. (1982). A comparison of different magnetic methods for determining the relative grain size of magnetite in natural materials: some results from lake sediments. Earth and Planetary Science Letters, 59(2), 404—419.

Krása, D., Petersen, K., & Petersen, N. (2007). Variable Field Translation Balance. In D. Gubbins, E. Herrero-Bervera (Eds.), Encyclopedia of Geomagnetism and Paleomagnetism. Springer, Dordrecht.

Le Borgne, E. (1955) Susceptibilité magnétique anormale du sol superficiel. Annals of Geophysics, 11, 399—419.

Linford, N. (2004). Magnetic Ghosts: Mineral magnetic measurements on Roman and Anglo-Saxon graves. Archaeological Prospection, 11, 167—180.

Liu, Q., Roberts, A.P., Larrasoana, J.C., Banerjee, S.K., Guyodo, Y., Tauxe, L., & Oldfield, F. (2012). Environmental magnetism: principles and applications. Reviews of Geophysics, 50, RG4002. doi: 10.1029/2012rg000393.

Lovley, D.R., Stolz, J.F., North, G.L., & Phillips, E.J.P. (1987). Anaerobic production of magnetite by dissimilatory iron-reducing microorganism. Nature, 330, 252—254.

Maher, B.A. (1998). Magnetic properties of modern soils and Quaternary loessic paleosols: paleoclimatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology, 137(1-2), 25—54. 00103-X.

Maher, B.A., Taylor, R.M. (1988). Formation of ultrafine-grained — magnetite in soils. Nature 336, 368—370.

Neubauer, W., Eder-Hinterleitner, A. (1997). Re¬sis¬tivity and magnetics of the Roman town Car¬nuntum, Austria: an example of combined in¬terpretation of prospection data. Archaeolo¬gical Prospection, 4(4), 179—189.<179: :AID-ARP85>3.0.CO;2-U.

Neubauer, W., Melichar, P., & Eder-Hinterleitner, A. (1996). Collection, visualization and simulation of magnetic prospection data. Analecta Praehistorica Leidensia, 28, 121—129.

Neubauer, W., Eder-Hinterleitner, A., Seren, S., & Melichar, P. (2002). Georadar in the Roman civil town Carnatum, Austria: An approach for archaeolgical interpretation of GPR data. Archaeological Prospection, 9(3), 135—156.

Peters, C., & Dekkers, M.J. (2003). Selected room temperature magnetic parameters as a function of mineralogy, concentration and grain size. Physics and Chemistry of the Earth, 28, 659—667.

Petrauskas, O.V. (2014). Komariv — ein Werkstattzentrum barbarischen Europas aus spätrömischer Zeit (Forschungsgeschichte, ei¬nige Ergebnisse und mögliche Perspektiven). Ephemeris Napocensis, 24, 87—116.

Pickartz, N., Rabbel, W., Rassmann, K., Müller-Scheessel, N., Furholt, M., Müller, J., & Dreibrodt, S. (2020). What over 100 drillings tell us: a new method for determining the Koenigsberger ratio of soils from magnetic mapping and susceptibility logging. Archaeological Prospection, 1—22.

Pignatelli, A., Nicolosi, I., Carluccio, R., Chiappini, M., & von Frese, R. (2011). Graphical interactive generation of gravity and magnetic fields. Computers and Geosciences, 37, 567—572.

Schmidt, A., Linford, P., Linford, N., David, A., Gaffney, C., Sarris, A., & Fassbinder, J. (2016). EAC Guidelines for the Use of Geophysics in Archaeology: Questions to Ask and Points to Consider, Europae Archaeologiae Consilium: Namur, Belgium.

Smekalova, T., Bevan, B., Chudin, A., & Garipov, A. (2016). The Discovery of an Ancient Gre¬ek Vineyard. Archaeological Prospection, 23, 15—26.

Tite, M.S., & Mullins, C. (1971) Enhancement of the magnetic susceptibility of soil on archaeological sites. Archaeometry, 13(2), 209—219.

Verosub, K.L. (1989). Detrital remanent magnetism (DRM). In Geophysics. Encyclopedia of Earth Science. Springer, Boston, MA.



How to Cite

Bondar, K. ., Petrauskas, O. ., Khomenko, R. ., & Popov, S. . (2022). Magnetic prospecting and rock magnetic study of soils and archaeological objects on the Late Roman time sites near Komariv in Middle Transnistria. Geofizicheskiy Zhurnal, 44(2), 29–52.