Electromagnetic-deformational waves of the Earth crust

V.N. Uvarov


This article briefly analyzes mechanisms of mechanoelectromagnetic transformations of the earth’s crust. It demostrates that the presence of these effects leads to the appearance of electromagnetic satellites, which are secondary electromagnetic waves associated seismic and acoustic waves propagating at the speed of the acoustic waves. The result is electromagnetic deforming wave, whose parameters depend on the source of excitation and parameters of propagation environment. Here is a proof of this phenomenon, gained during the field experiment conducted with the use of a borehole in a seismically active region of Kamchatka. It is concluded that the existence of 1) electromagnetic deforming waves is one of the fundamental properties of the Earth’s crust, 2) parameters of electromagnetic deforming waves depend strongly on the nature of the excitation source and the properties of the propagation medium


mechanic-electromagnetic transformations in the Earth’s crust; electromagnetic manifestations of seismic and acoustic waves; electromagnetic manifestations of crust deformation and tension waves; electromagnetic associates of crust seismic and acoustic wa


Gul'elmi A. V., 2006. Problems of physics Geoelectromagnetic waves. Fizika Zemli (3), 3—16 (in Russian)

Korotkina M. R., 1988. Electromagnetelastic. Moscow: Moscow Univ. Press, 304 p. (in Russian)

Mozhen Zh., 1991. Mechanics electromagnetic continua. Moscow: Mir, 560 p. (in Russian)

Molotskiy M. I., 1983. Auger mechanism of dislocation exo-emission. Fizika tverdogo tela 25(1), 121—126 (in Russian)

Parkhomenko E. I., 1968. Electrification phenomena in rocks. Moscow: Nauka, 225 p. (in Russian)

Svetov B. S., 2000. On the theoretical justification seismoelectric method of geophysical prospecting. Geofizika (1), 28—39 (in Russian)

Svetov B. S., 2005. Seismoelectrical methods for studying the Earth. In: Electromagnetic study Earth's interior. Moscow: Nauchnyy Mir, P. 217—230 (in Russian)

Svetov B. S., Gubatenko V. P., 1999. Electromagnetic field of mechanical and electrical origin in porous saturated with water rocks: 1. Formulation of the problem. Fizika Zemli (10), 67—73

Skipochka S. I., 2002. Mechanical and electrical effects in rocks and their use in mining geophysics. Dnepropetrovsk: National Mining Academy of Ukraine, 177 p. (in Russian)

Sobolev G. A., Demin V. M., 1980. Mechanical Electrical phenomena in the world. Moscow: Nauka, 215 p. (in Russian)

Sobolev G. A., Ponomarev A. V., 2003. Physics of earthquakes and precursors. Moscow: Nauka, 270 p. (in Russian)

Surkov V. V., 2000. Electromagnetic effects from earthquakes and explosions. Moscow: Publ. House. MEPHI, 447 p. (in Russian)

Frenkel’ Ya. I., 1944. Theory of seismic and seismoelectrical phenomena in wet soil. Izvestiya AN SSSR 8(4), 133—150 (in Russian)

Athy L. F., 1930. Density, porosity and computation of sedimentary rocks. Bull. Amer. Assoc. Petrol. Geol. 14, 1—24

Biot M. A., 1956a. Theory of propagation of elastic waves in a fluid-saturated porous solid. 1. Low-frequency range. J. Acoust. Soc. Am. 28(2), 168—178

Biot M. A., 1956б. Theory of propagation of elastic waves in a fluid-saturated porous solid. 2. Higher frequency range. J. Acoust. Soc. Am. 28(2), 179—191, doi:10.5194/sed-7-1447-2015

Hadjicontis V., C. Mavromatou C., Antsygina T. N., Chishko K. A., 2007. Mechanism of electromagnetic emission in plastically deformed ionic crystals. Phys. Rev. B 76(2), 024106. doi:10.1103/PhysRevB.76.024106

Jiles D. C., 1995. Theory of the magnetomechanical effect. J. Phys. D: Appl. Phys. 28, 1537—1546

Pride S. R., 1994. Governing equation for the coupled electromagnetic and acoustics of porous media. Phys. Rev. B 50(21), 15678—15696

Sasai Y., 2001. Tectonomagnetic modeling based on the piezomagnetism: a review. Annal. Geofis. 44(2), 361—368

St-Laurent F., Derr J. S., Freund F. T., 2006. Earthquake light and the stress-activation of positive hole chadge carriers in rocks. Phys. Сhem. Earth 31, 305—312

Teisseyre R., Ernst T. Electromagnetic radiation related to dislocation dynamics in a seismic preparation zone. Ann. Geophys. Italy 45(2), 393—399

Tzanis A., Vallianatos F., 2003. A physical model of electric earthquake precursors due to crack propagation and the motion of charged edge dislocations. In: Seismo Electromagnetics Lithosphere-Atmosphere-Ionosphere Coupling. Tokyo: Terrapub, P. 117—130

Uvarov V. N., Malkin E. I., Druzhin G. I., Sannikov D. V., Pukhov V. M., 2015. Acoustic–electromagnetic effects of tectonic movements of the crust — borehole survey. Solid Earth Discuss. 7, 1447—1468. www.solid-earth-discuss.net/7/1447/2015

Villary E., 1865. Change of magnetization by tension and by electric curerent. Ann. Phys. Chem. 126, 87

DOI: https://doi.org/10.24028/gzh.0203-3100.v38i6.2016.91888


  • There are currently no refbacks.