The decisive role of the crystalline crust faults in the Black Sea opening.

Authors

  • О. M. Rusakov Institute of Geophysics by S.I.Subbotin name, National Academy of Sciences of the Ukraine, Ukraine
  • І. K. Pashkevich Institute of Geophysics by S.I.Subbotin name, National Academy of Sciences of the Ukraine, Ukraine

DOI:

https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.93998

Keywords:

Black Sea, crystalline crust, faults, opening mechanism.

Abstract

The results of the international "Geology without Limits" project unequivocally confirmed the faults pattern in the crystalline crust of the Black Sea delineated from gravity and magnetic data. The locations of 135 from among ca. 150 faults on its surface derived from the seismic sections of this project completely coincide with those of the present study used. For the first time, we introduced clear evidence for the decisive role of the crystalline crust faults in the opening of the Black Sea. The long-lived Odessa-Sinop (OS) fault zone of the Precambrian origin was of prime importance for this process. It separated the рге-rift continental crust into two blocks with a different geological structure definitely recognized by an integrated geophysical analysis. The West Black Sea and East Black Sea Basins opened by two distinct mechanisms. The western basin, except its eastern part, opened behind a continental fragment that orthogonally rifted and moved towards the southeast along two parallel deep fault zones: the sinistral OS (together with the West Crimean — Pontides) and dextral Balkanides — Pontides (BP) faults. The rest of the Black Sea Basin has originated through the anticlockwise rotating of a large continental block that produced the breaking of the EBSB rift and forming Odessa-Sinop-Ordu (OSO) fault zone. The dextral strike-slip faults in this zone caused the opening of eight local pull-apart basins in the southeastern West Black Sea Basin. The OS fault system, as a long-term feature appears to control the strikes of the Western and Eastern Pontides and the present-day obliquity between the main rift axes of the Black Sea sub-basins. The direct southeastern prolongation of the OS fault forms the western boundary of the pre-Cretaceous strata of the Eastern Pontides.

References

Amelin N., Leonchik M., Petrov E., Senin В., 2014. Geology without limits: new data on regional setting of the Black Sea. Oil &. Gas J. Russia December, 44—48 (in Russian).

Ates A., Kearey P., Tufan S., 1999. New gravity and magnetic anomaly maps of Turkey. Geophys. J. Int. 136, 499—502.

Banks C. J., Robinson A. G., 1997. Mesozoic strike-slip back-arc basins of the Western Black Sea Region. In: Regional and petroleum geology of the Black Sea and surrounding region. Ed. A. G. Robinson. AAPG Mem. 68, 53—62.

Beşutiu L., Zugravesku D., 2004. Geophysical considerations on the Black Sea opening and its seismotectonic consequence. Rev. Roum. Geophys. 48, 3—13.

Cloetingh S., Spadini G., Van Wees J. D., Beekman F., 2003. Thermo-mechanical modeling of Black Sea Basin (de)formation. Sediment. Geol. 15, 169—184.

Cloetingh S., Burov E., Matenco L„ Beekman F., Roure P., Ziegler P. A., 2013. The Moho in extensional tectonic settings: Insights from thermo-mechanical models. Tectonophysics 609, 558—604.

Espurt N., Hippolyte J.-C., Kaymakci N., Sangu E., 2014. Lithospheric structural control on inversion of the southern margin of the Black Sea Basin, Central Pontides, Turkey. Lithosphere 6, 26—34.

Eyuboglu Y., Santosh M., Dudas F. О., Akaryal E., Chung S.-L., Akdap K., Bektato O., 2012. The nature of transition from adakitic to non-adakitic magmatism in a slab window setting: A synthesis from the Eastern Pontides, NE Turkey. Geosci. Front. 4, 353—375.

Finetti I., Bricchi G., Del Ben A., Pipan M., Xuan Z., 1988., Geophysical study of the Black Sea area. Boll. Geofis. Teor. Appl. 30, 197—324.

Georgiev G., 2012, Geology and Hydrocarbon Systems in the Western Black Sea. Turkish J. Earth Sci. 21, 723—754.

Gintov O. B., 2005. Field Tectonophysics and its Application for the Studies of Deformations of the Earth's Crust of Ukraine. Kiev: Feniks, 572 p. (in Russian).

Golonka J., 2004. Plate tectonic evolution of the southern margin of Eurasia in the Mesozoic and Cenozoic. Tectonophysics 381, 235—273.

Graham R., Kaymakci N., Horn B. W., 2013. The Black Sea: Something different? Geo ExPro. October, 60—61.

Giirbiiz A., 2010. Geometric characteristics of pull-apart basins. Lithosphere 2, 199—206.

Hippolyte J.-C., Miiller C., Kaymakci N., Sangи E., 2010. Dating of the Black Sea Basin: new nannoplankton ages from its inverted margin in the Central Pontides (Turkey). In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Eds M. Sosson, N. Kaymakci, R. A. Stephenson, F. Bergerat, V. Starostenko. London. Geol. Soc. Spec. Publ. 340, 113—136.

Howell D. G., 1989. Tectonics of Suspect Terranes. Mountain building and continental growth. Topics in the Earth Sciences (3). London, UK: Chapman and Hall, 232 p.

Kaymakci N., Graham R., Bellingham P., Horn B. W., 2014. Geological Characteristics of Black Sea Basin: Inferences from New Black Sea Seismic Data. AAPG Da tap ages/Search and Discovery Article #90194. 2014 International Conference and Exhibition, Istanbul, Turkey, September 14—17, 2014.

Khain V. E., Bogdanov Yu. G. (Eds), 1998. International Tectonic Map of Europe. 3rd ed. Scale 1 : 5000000. St. Petersburg, Russia: St. Petersburg Cartographic Factory.

Kravchenko S. N., Orlyuk M. I., Rusakov O. M., 2003. A new approach to interpretation of the Western Black Sea magnetic anomaly. Geophys. J. 24(2), 135—144 (in Russian).

Kutas R. I., Paliy S. I., Rusakov O. M., 2004. Deep faults, heat flow and gas leakage in the northern Black Sea. Geo-Mar Lett. 24, 163—168.

Man P., 2007. Global catalogue, classification and tectonic origins of restraining and releasing bends on active and ancient strike-slip fault systems. In: Tectonics of Strike-Slip Restraining and Releasing Bends. Eds W. D. Cunningham, P. Mann. London. Geol. Soc. Spec. Publ. 290, 13—142.

Meijers M. J., Kaymakci N., van Hinsbergen D. J. J., Langereis C. G., Stephenson R. A., Hippolyte J.-C., 2010. Late Cretaceous to Paleocene oroclinal bending in the central Pontides (Turkey). Tectonics (29), TC4016. doi: 10.1029/2009TC002620.

Meisner A.,, Krylov O., Nemuok M., 2009. Development and structural architecture of the Eastern Black Sea. The Leading Edge 28, 1046—1055.

Meisner A., 2010. Geological structure and oil and gas prospectivity of the Tuapse Trough and Shatsky Swell: PhD Moscow State University, Russia, 191 p. (in Russian).

Molnar P., 2015. Plate Tectonics. A very Short Introduction. Oxford: Oxford University Press, 136 p.

Munteanu I., Willingshofer E., Sokoutis D., Matenco L., Dinu C., Cloetingh S., 2013. Transfer of deformation in back-arc basins with a laterally variable rheology: Constraints from analogue modeling of the Balkanides-Western Black Sea inversion. Tectonophysics 602, 223—236.

Nikishin A. M., Korotaev M. V., Ershov A. V., Brunei M. F., 2003. The Black Sea basin: tectonic history and Neogene-Quaternary rapid subsidence modeling. Sediment. Geol. 15, 149—168.

Nikishin A. M, Zieger P., Bolotov S. N., Fokin P. A., 2011. Late Palaeozoic to Cenozoic Evolution of the Black Sea-Southern Eastern Europe Region: A View from the Russian Platform. Turkish J. Earth Sci. 20, 571—634.

Nikishin A. M., Khotylev A. O., Bychkov A. Yu., Kopaevich L. F., Petrov E. I., Yapaskurt V. O., 2013. Cretaceous Volcanic Belts and the Evolution of the Black Sea. Mosc. Univ. Geol. Bull. 68, 141— 154.

Nikishin A. M., Okay A., Tüysüz O., Demirer A., Wannier M., Amelin N., Petrov E., 2015a. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 1: Basins structure and fill. Mar. Petrol. Geol. 59, 636—655.

Nikishin A. M., Okay A., Tüysüz O., Demirer A., Wannier M., Amelin N., Petrov E., 2015b. The Black Sea basins structure and history: New model based on new deep penetration regional seismic data. Part 2: Tectonic history and paleogeography. Mar. Petrol. Geol. 59, 656—670.

Nikisin A.M., Petrov E., 2013. www.blackseandcaspian.com/.../6-Nikishin-Petr.

Okay A. I., Akdopan R., Sunal G., Tüysüz O., Altiner D., Kylander-Clarck A. R., Sherlock S., 2014. Lower Cretaceous Turbidites of the Pontides and the Opening of the Black Sea. AAPG Datapages /Search and Discovery Article #51045.

Okay A. I., Nikishin A. M., 2015. Tectonic evolution of the southern margin of Laurasia in the Black Sea region. Int. Geol. Rev. 57, 1051—1076.

Okay A. I., Şengör A.M. C., Görür N., 1994. Kinematic history of the opening of the Black Sea and its effect on the surrounding regions. Geology 22, 267—270.

Özkan Z., Okay A. I., Özkan E., Накуетеz A., Özkan-Altiner S., 2012. Late Cretaceous-Eocene Geological Evolution of the Pontides Based on New Stratigraphic and Palaeontologic Data Between the Black Sea Coast and Bursa (NW Turkey). Turkish J. Earth Sci. 21, 933—960.

Pease P., Daly J. S., Elming S.-A., Kumpulainen R., Moczydlowska M., Puchkov V., Robertsf D., Saintot A., Stephenson R., 2008. Baltica in the Cryogenian, 850—630 Ma. Precambrian Res. 160, 46— 65.

Rangin C., Bader A. G., Pascal C., Ecevitoplu В., Görür N., 2002. Deep structure of the Mid Black Sea High (offshore Turkey) imaged by multi-channel seismic survey (BLACKSIS cruise). Mar. Geol. 182, 265—278.

Robertson А. H. F., Ustaomer T., 2004. Tectonic evolution of the Intra-Pontide suture zone in the Armutlu Peninsula, NW Turkey. Tectonophysics 381, 175—209.

Schleder Z., Krezsek C., Turi V., Tari G., Kosi W., Fallan M., 2015. Regional Structure of the western Black Sea Basin: Constraints from Cross- Section Balancing. In: 4ih Annual GCSSEPMf Foundation Perkins-Rosen Research Conference "Petroleum Systems in Rift Basins" Houston, TX, USA, 13—16 December, P. 509—520.

Scott C. L., 2009. Formation and evolution of the eastern Black sea basin: Constraints from wide angle seismic data: PhD, University of Southampton, Southampton.

Shillington D. J., Scott C. L., Minshull T. A., Edwards R. A., Brown P. J., White N., 2009. Abrupt transition from magma-starved to magma-rich rifting in the eastern Black Sea. Geology 37, 7—10.

ShreiderA. A., Kazmin V. G., Lygin V. S., 1997. Magnetic anomalies and the problem of an age of the Black Sea Basin. Geotectonics 3, 54—64.

Silvester A. G., 1988. Strike-slip faults. Geol. Soc. Am. Bull. 100, 1666—1703.

Spadini G., Robinson A. G., Cloetingh S., 1997. Thermo-mechanical modeling of Black Sea basins formation, subsidence and sedimentation. In: Regional and Petroleum Geology of the Black Sea and Surrounding Region. Ed. A. G. Robinson. AAPG Mem. 68, 291—312.

Spadini G., Robinson A., Cloetingh S., 1996. Western versus Black Sea tectonic evolution: pre-rift lithospheric controls on basin formation. Tectonophysics 266, 139—154.

Starostenko V., Buryanov V., Makarenko I., Rusakov O., Stephenson R., Nikishin A., Georgiev G., Gerasimov M., Dimitru R., Legostaeva O., Pchelarov V., Sava С., 2004. Topography of the crust- mantle boundary beneath the Black Sea Basin. Tectonophysics 381, 211—233.

Starostenko V. I., Makarenko I. В., Rusakov O. M., Pashkevich I. K., Kutas R. I., Legostaeva O. V., 2010. Geophysical inhomogeneities of the Black Sea megadepression. Geophys. J. 32(5), 3—20 (in Russian).

Starostenko V. I., Rusakov O. M., Pashkevich I. K., Kutas R. I., Makarenko I. В., Legostaeva О. V., Lebed T. V., Savchenko A. S., 2015. Heterogeneous structure of the lithosphere in the Black Sea from a multidisciplinary analysis of geophysical fields. Geophys. J. 37(2), 3—28.

Stephenson R., Schellart W. P., 2010, The Black Sea back-arc basin: insight to its origin from geodynamic models of modern analogues. In: Sedimentary Basin Tectonics from the Black Sea and Caucasus to the Arabian Platform. Eds M. Sosson, N. Kaymakci, R. A. Stephenson, F. Bergerat, V. Starostenko. London. Geol. Soc. Spec. Publ. 340, 11—21.

Tari G., 2015. Is the Black Sea Really a Back-Arc Basin? In: 4"' Annual GCSSEPM Foundation Perkins-Rosen Research Conference "Petroleum Systems in Rift Basins" December, 509—520.

Trifonova P., Simeonova S., Solakov D., Metodiev M., 2012. Exploring seismicity in Bulgaria using geomagnetic and gravity data. CR Acad. Bulg. Sci. 65, 661—668.

Winchester J. A., Pharaon T. C., Verniers J., Ioane D., Seghedi A., 2006. Palaeozoic accrction of Gondwana-derived terranes to the East European Craton: recognition of detached terrane fragments dispersed after collision with promontories. In: European Lithosphere Dynamics. Eds D. Gee, R. Stephenson. London. Geol. Soc. Mem. 32, 323—332.

Zonenshain L. P., Le Pichon X., 1986. Deep basins of the Black Sea and Caspian Sea as remnants of Mesozoic back-arc basins. Tectonophysics 123, 181—211.

Downloads

Published

2017-03-01

How to Cite

Rusakov О. M., & Pashkevich І. K. (2017). The decisive role of the crystalline crust faults in the Black Sea opening. Geofizicheskiy Zhurnal, 39(1), 3–16. https://doi.org/10.24028/gzh.0203-3100.v39i1.2017.93998

Issue

Section

Articles