DOI: https://doi.org/10.15587/2313-8416.2015.35893

Thermoelectric coefficients in Landauer-Datta-Lundstrom transport model

Юрий Алексеевич Кругляк

Abstract


On the basis of the «bottom – up» approach of Landauer-Datta-Lundstrom transport model the basic equations of thermoelectricity with the corresponding transport coefficients for 1D conductors in the ballistic regime and 3D conductors in the diffusion regime with an arbitrary dispersion and for any size were strictly derived. The thermoelectric coefficients for 1D, 2D, and 3D semiconductors with parabolic dispersion in the ballistic and diffusive regimes are expressed through standard Fermi-Dirac integrals.


Keywords


nanophysics; nanoelectronics; molecular electronics; thermoelectric coefficients; Fermi-Dirac integrals

References


Kruglyak, Yu. A. (2013). The Generalized Landauer-Datta-Lunstrom Electron Transport Model. Nanosystems, Nanomaterials, Nanotechnologies, 11 (3), 519–549. Erratum: ibid, (2014)., 12 (2), 415.

Kruglyak, Yu. A. (2013). From Ballistic Conductivity to Diffusional in the Landauer-Datta-Lunstrom. Transport Model, Nanosystems, Nanomaterials, Nanotechnologies, 11 (4), 655–677.

Kruglyak, Yu. A. (2014). Thermoelectric phenomena and devices in the Landauer-Datta-Lunstrom approach. ScienceRise, 3/2(5), 73–88. doi: 10.15587/2313-8416.2014.27967

Lundstom, M., Guo, J. (2006). Nanoscale Transistors: Physics, Modeling, and Simulation. Berlin: Springer, 218.

Kim, R., Lundstrom, M. S. Notes on Fermi – Dirac Integrals. Purdue University. Available at: www.nanohub.org/resources/5475

Lundstrom, M., Jeong, C. (2013). Near-Equilibrium Transport: Fundamentals and Applications. Hackensack, New Jersey: World Scientific Publishing Company. Available at: www.nanohub.org/resources/11763

Sommerfeld, A. (1928). An electronic theory of the metals based on Fermi's statistics. Journal of Physics, 47 (1), 1.

Ashcroft, N. W., Mermin, N. D. (1979). Solid State Physics (Philadelphia: Suanders College, 486.

Geballe, T. N., Hull, G. W. (1954). Seebeck Effect in Germanium, Physical Review, 94 (5), 1134–1140. doi: 10.1103/physrev.94.1134

Pierret, R. F. (1996). Semiconductor Device Fundamentals. Reading, MA: Addison–Wesley, 792.

Kim, R. S. (2011). Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices. West Lafayette: Purdue University, 218.

Supriyo, D. (2012). Lessons from Nanoelectronics: A New Perspective on Transport. Hackensack, New Jersey: World Scientific Publishing Company, 473. Available at: www.nanohub.org/courses/FoN1

Kruglyak, Yu. A., Kruglyak, N. Yu., Strikha, М. V. (2013). Lessons of nanoelectronics. Thermoelectric phenomena in «bottom – up» approach, Sensor Electronics Microsys. Tech., 13 (1), 6–21.

Kruglyak, Yu. A. (2013). Lessons of nanoelectronics. 4. Thermoelectric phenomena in «bottom – up» approach. Physics in Higher Education, 19 (4), 70–85.


GOST Style Citations


1. Кругляк, Ю. А. Обобщенная модель электронного транспорта Ландауэра-Датты-Лундстрома [Текст] / Ю. А. Кругляк // Nanosystems, Nanomaterials, Nanotechnologies. – 2013. – Т. 11, № 3. – С. 519 – 549. Erratum: ibid. – 2014. – Т. 12, № 2. – С. 415.

2. Кругляк, Ю. А. От баллистической проводимости к диффузионной в транспортной модели Ландауэра-Датты-Лундстрома [Текст] / Ю. А. Кругляк // Nanosystems, Nanomaterials, Nanotechnologies. – 2013. – Т. 11, № 4. – С. 655–677.

3. Кругляк, Ю. А. Термоэлектрические явления и устройства в концепции Ландауэра-Датты-Лундстрома [Текст] / Ю. А. Кругляк // ScienceRise. – 2014. – № 3/2(5). – С. 73–88. doi: 10.15587/2313-8416.2014.27967

4. Lundstom, M. Nanoscale Transistors: Physics, Modeling, and Simulation [Text] / M. Lundstom, J. Guo. – Berlin: Springer, 2006. – 218 p.

5. Kim, R. Notes on Fermi – Dirac Integrals. Third edition [Electronic resource] / R. Kim, M. S. Lundstrom. – Purdue University. – Available at:  www.nanohub.org/resources/5475

6. Lundstrom, M. Near-Equilibrium Transport: Fundamentals and Applications [Electronic resource] / M. Lundstrom, C. Jeong. – Hackensack, New Jersey: World Scientific Publishing Company, 2013. – Available at: www.nanohub.org/resources/11763

7. Sommerfeld, A. An electronic theory of the metals based on Fermi's statistics [Text] / A. Sommerfeld // Journal of Physics. – 1928. – Vol. 47, Issue . – P. 1.

8. Ашкрофт, Н. Физика твердого тела [Текст] / Н. Ашкрофт, Н. Мермин. – М: Мир, 1979. – 486 с.

9. Geballe, T. N. Seebeck Effect in Germanium [Text] / T. N. Geballe, G. W. Hull // Physical Review. – 1954. – Vol. 94, Issue 5. – P. 1134–1140. doi: 10.1103/physrev.94.1134 

10. Pierret, R. F. Semiconductor Device Fundamentals [Text] / R. F. Pierret. – Reading, MA: Addison–Wesley, 1996. – 792 p.

11. Kim, R. S. Physics and Simulation of Nanoscale Electronic and Thermoelectric Devices [Text] / R. S. Kim. – West Lafayette: Purdue University, 2011. – 218 p.

12. Supriyom D. Lessons from Nanoelectronics: A New Perspective on Transport [Text] / D. Supriyo. – Hackensack, New Jersey: World Scientific Publishing Company, 2012. – 473 p. – Available at: www.nanohub.org/courses/FoN1

13. Кругляк, Ю. O. Уроки наноелектроніки. Термоелектричні явища в концепції «знизу – вгору» [Текст] / Ю. O. Кругляк, Н. Ю. Кругляк, М. В. Стріха // Sensor Electronics Microsys. Tech. – 2013. – Т. 13, № 1. – С. 6–21.

14. Кругляк, Ю. А. Уроки наноэлектроники. 4. Термоэлектрические явления в концепции «снизу – вверх» [Текст] / Ю. А. Кругляк // Физическое образование в вузах. – 2013. – Т. 19, № 4. – С. 70–85.







Copyright (c) 2014 Юрій Олексійович Кругляк

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN 2313-8416 (Online), ISSN 2313-6286 (Print)