Modern methods of wine quality analysis

Authors

  • Галина Зуфарівна Гайда Institute of Cell Biology, NAS of Ukraine, 14/16 Drahomanov Str., Lviv, Ukraine, 79005 http://orcid.org/0000-0003-4015-8083
  • Галина Миколаївна Клепач Drohobych Ivan Franko State Pedagogical University, Shevchenкo Str., 23, Drohobych, Lviv region, Ukraine, 82100
  • Марія Миколаївна Синенька Institute of Cell Biology, NAS of Ukraine, 14/16 Drahomanov Str., Lviv, Ukraine, 79005
  • Наталія Євгенівна Стасюк Institute of Cell Biology NAS of Ukraine 14/16 Drahomanov str., Lviv, Ukraine, 79005
  • Михайло Васильович Гончар Institute of Cell Biology NAS of Ukraine, 14/16 Drahomanov str., Lviv, Ukraine, 79005

DOI:

https://doi.org/10.15587/2313-8416.2015.45118

Keywords:

methods of wine analysis, enzymes, biosensors, ethanol, glycerol, lactate, glucose, arginine

Abstract

 In this paper physical-chemical and enzymatic methods of quantitative analysis of the basic wine components were reviewed. The results of own experiments were presented for the development of enzyme- and cell-based amperometric sensors on ethanol, lactate, glucose, arginine

Author Biographies

Галина Зуфарівна Гайда, Institute of Cell Biology, NAS of Ukraine, 14/16 Drahomanov Str., Lviv, Ukraine, 79005

Phylosophy doctor, chemistry, senior scientist

Department of analytical biotechnology, senior scientist

Галина Миколаївна Клепач, Drohobych Ivan Franko State Pedagogical University, Shevchenкo Str., 23, Drohobych, Lviv region, Ukraine, 82100

Candidate of Biological Sciences, associate professor

Department of biology

Марія Миколаївна Синенька, Institute of Cell Biology, NAS of Ukraine, 14/16 Drahomanov Str., Lviv, Ukraine, 79005

Department of analytical biotechnology, engineer

Наталія Євгенівна Стасюк, Institute of Cell Biology NAS of Ukraine 14/16 Drahomanov str., Lviv, Ukraine, 79005

Candidate of chemical sciences

Department of Analytical Biotechnology, Junior Research Scientist

Михайло Васильович Гончар, Institute of Cell Biology NAS of Ukraine, 14/16 Drahomanov str., Lviv, Ukraine, 79005

Professor, Doctor of Biological Science,

The Head of the Department of Analytical Biotechnology 

References

Wine Science, 3rd Edition. Principles and Applications (2008). Ed. Jackson & Jackson, Academic Press, 776.

Marsili, R. (Ed.) (2001). Flavor, Fragrance, and Odor Analysis. Second edition. CRC Press, 280. doi: 10.1201/9780203908273

Jackson, R. (2009).Wine Tasting. A Professional Handbook. Academic Press, 512.

Rebero-Gayon, J., Peyro, J. et al. (1979). Theory and practice of winemaking. Food industry. Мoscow, 2, 352.

Grossmann, M. It’s not all about adulteration. Modern Wine Analysis. Trace analysis of precious drops., 2–5. Available at: http://www.gerstel.com/pdf/GSW_Wine_Special_en.pdf

Goriushkina, T. B., Dziyadevych, S. V. (2008). Grape wines. Chemical composition and methods determination. Biotechnology, 1 (2), 24–38.

Speciality Wines (2011). Advances in Food and Nutrition Research, 63, 1–314.

Villamor, R. R., Evans, M. A. et al. (2013). Effects of ethanol, tannin and fructose on the headspace concentration and potential sensory significance of odorants in a model wine. Food Research International, 50 (1), 38–45.

Muñoz-González, C., Rodríguez-Bencomo, J. J., Moreno-Arribas, M. V., Pozo-Bayón, M. Á. (2011). Beyond the characterization of wine aroma compounds: looking for analytical approaches in trying to understand aroma perception during wine consumption. Anal Bioanal Chem, 401 (5), 1497–1512. doi: 10.1007/s00216-011-5078-0

Ferreira, S. L. C., Ferreira, H. S., de Jesus, R. M., Santos, J. V. S., Brandao, G. C., Souza, A. S. (2007). Development of method for the speciation of inorganic iron in wine samples. Analytica Chimica Acta, 602 (1), 89–93. doi: 10.1016/j.aca.2007.09.002

Mehuzl, N. A. (Ed.) (1993). Text-book. International methods of analyses and appreciation of wines and musts. Food industry, 38–61.

Espinoza, M., Olea-Azar, C., Speisky, H., Rodríguez, J. (2009). Determination of reactions between free radicals and selected Chilean wines and transition metals by ESR and UV–vis technique. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 71 (5), 1638–1643. doi: 10.1016/j.saa.2008.06.015

Villano, D., Fernandezpachon, M., Troncoso, A., Garciaparrilla, M. (2006). Influence of enological practices on the antioxidant activity of wines. Food Chemistry, 95 (3), 394–404. doi: 10.1016/j.foodchem.2005.01.005

Argyri, K., Komaitis, M., Kapsokefalou, M. (2006). Iron decreases the antioxidant capacity of red wine under conditions of in vitro digestion. Food Chemistry, 96 (2), 281–289. doi: 10.1016/j.foodchem.2005.02.035

Kishkovskij, Z. N., Skurihin, I. M. (1988). Himija vina. Agropromizdat, 254.

Karadjova, I., Izgi, B., Gucer, S. (2002). Fractionation and speciation of Cu, Zn and Fe in wine samples by atomic absorption spectrometry. Spectrochimica Acta Part B: Atomic Spectroscopy, 57 (3), 581–590. doi: 10.1016/s0584-8547(01)00386-x

Ajtony, Z., Szoboszlai, N., Suskó, E. K., Mezei, P., György, K., Bencs, L. (2008). Direct sample introduction of wines in graphite furnace atomic absorption spectrometry for the simultaneous determination of arsenic, cadmium, copper and lead content. Talanta, 76 (3), 627–634. doi: 10.1016/j.talanta.2008.04.014

Franc, C., David, F., de Revel, G. (2009). Multi-residue off-flavour profiling in wine using stir bar sorptive extraction–thermal desorption–gas chromatography–mass spectrometry. Journal of Chromatography A, 1216 (15), 3318–3327. doi: 10.1016/j.chroma.2009.01.103

Ragazzo-Sanchez, J. A., Chalier, P. et al. (2008). Identification of different alcoholic beverages by electronic nose coupled to GC. Sensors and Actuators B: Chemical, 134 (1), 43–48.

Restani, P., Uberti, F., Tarantino, C., Ballabio, C., Gombac, F., Bastiani, E. (2011). Validation by a Collaborative Interlaboratory Study of an ELISA Method for the Detection of Caseinate Used as a Fining Agent in Wine. Food Analytical Methods, 5 (3), 480–486. doi: 10.1007/s12161-011-9270-9

Pan, X.-D., Tang, J., Chen, Q., Wu, P.-G., Han, J.-L. (2013). Evaluation of direct sampling method for trace elements analysis in Chinese rice wine by ICP–OES. European Food Research and Technology, 236 (3), 531–535. doi: 10.1007/s00217-012-1888-3

Gómez-Alonso, S., García-Romero, E., Hermosín-Gutiérrez, I. (2007). HPLC analysis of diverse grape and wine phenolics using direct injection and multidetection by DAD and fluorescence. Journal of Food Composition and Analysis, 20 (7), 618–626. doi: 10.1016/j.jfca.2007.03.002

Uthurry, C. A., Lepe, J. A. S., Lombardero, J., García Del Hierro, J. R. (2006). Ethyl carbamate production by selected yeasts and lactic acid bacteria in red wine. Food Chemistry, 94 (2), 262–270. doi: 10.1016/j.foodchem.2004.11.017

Mira de Orduña, R. (2000). Ethyl carbamate precursor citrulline formation from arginine degradation by malolactic wine lactic acid bacteria. FEMS Microbiology Letters, 183 (1), 31–35. doi: 10.1016/s0378-1097(99)00624-2

Jiao, Z., Dong, Y., Chen, Q. (2014). Ethyl Carbamate in Fermented Beverages: Presence, Analytical Chemistry, Formation Mechanism, and Mitigation Proposals. Comprehensive Reviews in Food Science and Food Safety, 13 (4), 611–626. doi: 10.1111/1541-4337.12084

Jones, P. R., Gawel, R., Francis, I. L., Waters, E. J. (2008). The influence of interactions between major white wine components on the aroma, flavour and texture of model white wine. Food Quality and Preference, 19 (6), 596–607. doi: 10.1016/j.foodqual.2008.03.005

Brainina, K. (2004). Determination of heavy metals in wines by anodic stripping voltammetry with thick-film modified electrode. Analytica Chimica Acta, 514 (2), 227–234. doi: 10.1016/s0003-2670(04)00372-1

Catarino, S., Curvelo-Garcia, A. S., Sousa, R. B. de. (2006). Measurements of contaminant elements of wines by inductively coupled plasma-mass spectrometry: A comparison of two calibration approaches. Talanta, 70 (5), 1073–1080. doi: 10.1016/j.talanta.2006.02.022

Spayd, S. E., Wample, R. L. et al. (1994). Nitrogen fertilization of white Riesling grapes in Washington. Must and wine composition. Am. J. Enol. Vitic., 45, 34–42.

Huang, Z., Ough, C. S. (1989). Effect of vineyard locations, varieties and rootstocks on the juice amino acid composition of several cultivars. Ibid., 40, 135–139.

Ough, C. S., Stevens, D., Almy, J. (1989). Preliminary comments on effects of grape vineyard nitrogen fertilization on the subsequent ethyl carbamate formation in wines. Am. J. Enol. Vitic., 40, 219–220.

Kaplan, N. O., Ciotti, M. M. (1957). Enzymatic determination of ethanol. Methods in Enzymology, 3, 253–255. doi: 10.1016/s0076-6879(57)03385-6

Shleev, S. V., Shumakovich, G. P., Nikitina, O. V., Morozova, O. V., Pavlishko, H. M., Gayda, G. Z., Gonchar, M. V. (2006). Purification and characterization of alcohol oxidase from a genetically constructed over-producing strain of the methylotrophic yeast Hansenula polymorpha. Biochemistry (Moscow), 71 (3), 245–250. doi: 10.1134/s0006297906030035

Pavlishko, G. M., Gajda, G. Z., Gonchar, M. V. (2004). Alkogol'oksydaza ta i'i' bioanalitychne vykorystannja. Visnyk L'viv. Un-tu. Biol. Serija, 35, 3–22.

Gonchar, M. V. (1999). Tradicionnye i fermentativnye metody opredelenija alkogolja v biologicheskih gidkostjah. Lab. diagnostika, 1, 45–49.

Gonchar, M. V. (1998). Chutlivij metod kіl'kіsnogo viznachennja peroksidu vodnju ta substratіv oksidaz u bіologіchnih ob’ektah. Ukr. bіohіm. zhurn., 70 (5), 157–163.

Pavlishko, N. M., Ryabinina, O. V., Zhilyakova, T. A., Sakharov, I. Y., Gerzhikova, V. G., Gonchar, M. V. (2005). Oxidase-Peroxidase Method of Ethanol Assay in Fermented Musts and Wine Products. Appl Biochem Microbiol, 41 (6), 604–609. doi: 10.1007/s10438-005-0110-9

Kiba, N., Azuma, N., Furusawa, M. (1996). Chemiluminometric method for the determination of glycerol in wine by flow-injection analysis with co-immobilized glycerol dehydrogenase/NADH oxidase. Talanta, 43 (10), 1761–1766. doi: 10.1016/0039-9140(96)01969-8

Segundo, M. A., Rangel, A. O. S. (2002). Sequential injection flow system with improved sample throughput: determination of glycerol and ethanol in wines. Analytica Chimica Acta, 458 (1), 131–138. doi: 10.1016/s0003-2670(01)01525-2

Mataix, E. (2000). Simultaneous determination of ethanol and glycerol in wines by a flow injection-pervaporation approach with in parallel photometric and fluorimetric detection. Talanta, 51 (3), 489–496. doi: 10.1016/s0039-9140(99)00297-0

Rangel, A. O. S. S., Tóth, I. V. (2000). Enzymatic determination of ethanol and glycerol by flow injection parallel multi-site detection. Analytica Chimica Acta, 416 (2), 205–210. doi: 10.1016/s0003-2670(00)00905-3

Global Market Study on Biosensor: Asia-Pacific to Witness Highest Growth by 2020. Available at: http://www.persistencemarketresearch.com/market-research/biosensor-market.asp

Smutok, O., Gayda, G. et al.; Serra, P. A. (Ed.) (2011). Amperometric Biosensors for Lactate, Alcohols, and Glycerol Assays in Clinical Diagnostics. Chapter 20 in the Book “Biosensors - Emerging Materials and Applications”. INTECH. 401–446. doi: 10.5772/16643

Luca, G. C., Reis, B. F., Zagatto, E. A., Montenegro, M. C. B. S., Araújo, A. N., Lima, J. L. F. (1998). Development of a potentiometric procedure for determination of glycerol and 2,3-butanediol in wine by sequential injection analysis. Analytica Chimica Acta, 366 (1-3), 193–199. doi: 10.1016/s0003-2670(98)00103-2

Monošík, R., Ukropcová, D., Streďanský, M., Šturdík, E. (2012). Multienzymatic amperometric biosensor based on gold and nanocomposite planar electrodes for glycerol determination in wine. Analytical Biochemistry, 421 (1), 256–261. doi: 10.1016/j.ab.2011.10.020

Goriushkina, T. B., Soldatkin, A. P., Dzyadevych, S. V. (2009). Application of Amperometric Biosensors for Analysis of Ethanol, Glucose, and Lactate in Wine. Journal of Agricultural and Food Chemistry, 57 (15), 6528–6535. doi: 10.1021/jf9009087

Gamella, M., Campuzano, S., Reviejo, A. J., Pingarrón, J. M. (2008). Integrated multienzyme electrochemical biosensors for the determination of glycerol in wines. Analytica Chimica Acta, 609 (2), 201–209. doi: 10.1016/j.aca.2007.12.036

Li, B., Lan, D., Zhang, Z. (2008). Chemiluminescence flow-through biosensor for glucose with eggshell membrane as enzyme immobilization platform. Analytical Biochemistry, 374 (1), 64–70. doi: 10.1016/j.ab.2007.10.036

Haghighi, B., Hamidi, H., Gorton, L. (2010). Electrochemical behavior and application of Prussian blue nanoparticle modified graphite electrode. Sensors and Actuators B: Chemical, 147 (1), 270–276. doi: 10.1016/j.snb.2010.03.020

Gajda, G. Z., Stasjuk, N. Je., Gonchar, M. V. (2014) Metody analizu L-argininu. Biotechnologia Acta, 7 (1), 31–39.

Stasyuk, N. E., Gaida, G. Z., Gonchar, M. V. (2013). L-arginine assay with the use of arginase I. Appl Biochem Microbiol, 49 (5), 529–534. doi: 10.1134/s000368381305013x

Stasyuk, N. Ye., Gayda, G. Z., Gonchar, M. V. (2014). L-arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors & Actuators B. (Chemical), 204, 515–521. doi: 10.1016/j.snb.2014.06.112

Smutok, O., Ngounou, B. et al. (2006). A reagentless bienzyme amperometric biosensor based on alcohol oxidase/peroxidase and an Os-complex modified electrodeposition paint. Sensors Actuators B: Chem., 113 (2), 590–598.

Stasyuk, N. Y., Gayda, G. Z., Gonchar, M. V. (2014). l-Arginine-selective microbial amperometric sensor based on recombinant yeast cells over-producing human liver arginase I. Sensors and Actuators B: Chemical, 204, 515–521. doi: 10.1016/j.snb.2014.06.112

Stasyuk, N., Smutok, O., Gayda, G., Vus, B., Koval’chuk, Y., Gonchar, M. (2012). Bi-enzyme l-arginine-selective amperometric biosensor based on ammonium-sensing polyaniline-modified electrode. Biosensors and Bioelectronics, 37 (1), 46–52. doi: 10.1016/j.bios.2012.04.031

Published

2015-06-25

Issue

Section

Biological sciences