Approximate calculation of the problems of the theory of drying capillary-porous solids of complicated form

Authors

DOI:

https://doi.org/10.15587/2313-8416.2016.62663

Keywords:

heat-mass exchange, drying, R-function method, capillary-porous body, food raw materials, temperature, moisture content

Abstract

It is noted that the effectiveness of intensification of drying of food raw materials is on the way to the study of mathematical models, taking into account a wide range of thermal parameters and boundary conditions. It is proposed the development of R-functions method consistent with the method of small parameter applied to solving problems of heat and mass transfer. An approximate solution of the problem of the distribution of temperature and moisture in capillary-porous cylindrical body with boundary conditions of the third kind was determined

 

Author Biographies

Микола Іванович Погожих, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, professor, head of department

Department of physical and mathematical and engineering-technical disciplines

Микола Сергійович Синєкоп, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, professor

Department of physical and mathematical and engineering-technical disciplines

Дмитро Олександрович Торяник, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Candidate of Physical and Mathematical Sciences, associate professor

Department of physical and mathematical and engineering-technical disciplines

Андрій Олегович Пак, Kharkiv State University of Food Technology and Trade 333 Klochkivska str., Kharkiv, Ukraine, 61051

Doctor of Technical Sciences, professor, head of department

Department of physical and mathematical and engineering-technical disciplines

References

Kumar, A. V., Padmanabhan, S., Burla, R. (2008). Implicit boundary method for finite element analysis using non-conforming mesh or grid. International Journal for Numerical Methods in Engineering, 74 (9), 1421–1447. doi: 10.1002/nme.2216

Dem'janov, V. F., Tamasjan, G. Sh. (2010). O prjamyh metodah reshenija variacionnyh zadach. Trudy instituta matematiki i mehaniki UrO RAN, 16 (5), 36–47.

Trefethen, L. N. (2006). Numerical Analysis. Princeton Companion of Mathematics. Princeton University Press, 20.

Dey, T. K., Goswami, S. (2004). Provable surface reconstruction from noisy samples. Proceedings of the Twentieth Annual Symposium on Computational Geometry – SCG’04. doi: 10.1145/997817.997867

Rvachev, V. L. (1982). Teorija R-funkcij i nekotorye ee prilozhenija. Kiev: Nauk. dumka, 552.

Shapiro, V. (2007). Semi-analytic geometry with R-functions. Acta Numerica, 16, 239. doi: 10.1017/s096249290631001x

Lykov, A. V., Mihajlov, Ju. A. (1963). Teorija teplo- i massoperenosa. Moscow – Leningrad: Gosudarstvennoe jenergeticheskoe izdatel'stvo, 535.

Maksimenko-Shejko, K. V., Shejko, T. I. (2010). R-funkcii v matematicheskom modelirovanii geometricheskih ob’ektov v 3D po informacii v 2D. Vіsnik Zaporіz'kogo nacіonal'nogo unіversitetu, 1, 98–104.

Balabanian, N., Carlson, B. (2001). Digital logic design principles. John Wiley & Sons, Inc., 39–40.

Maksimenko-Shejko, K. V., Macevityj, A. M., Tolok, A. V., Shejko, T. I. (2007). R-funkcii i obratnaja zadacha analiticheskoj geometrii v trehmernom prostranstve. Informacionnye tehnologii, 10, 23–32.

Hernandez, M. A. (2001). Chebyshev's approximation algorithms and applications. Computers & Mathematics with Applications, 41 (3-4), 433–445. doi: 10.1016/s0898-1221(00)00286-8

Mihlin, S. G. (1970). Variacionnye metody v matematicheskoj fizike. Moscow: Nauka, 512.

Lobanova, L. S., Sinekop, N. S. (2001). Nestacionarnye dinamicheskie zadachi termouprugosti v dvuhmernyh oblastjah. Problemy mashinostroenija, 4 (1-2), 108.

Published

2016-03-27

Issue

Section

Technical Sciences