Influence of hypolipidemic agents on the level of steatogenic and fibrogenic modulators in rats with non-alcoholic fatty liver disease associated with hyperhomocysteinemia

Authors

DOI:

https://doi.org/10.15587/2519-4798.2017.100177

Keywords:

Homocysteine, Hydrogen sulfide, insulin-like growth factor-1, steatosis, fibrosis, Simvastatin, omega-3, polyunsaturated fatty acids

Abstract

The aim was to determine the influence of Simvastatin and PUFA ω-3 remedy on the level of pro-fibrogenic neurotransmitters (Homocysteine, TNFα) and the level of neurotransmitters that determine anti-fibrous and liver regeneration potential (H2S and IGF-1) under experimental NAFLD associated with HHC.

Materials and methods. The study was carried out using 100 white laboratory male rats divided into 7 experimental and 3 control groups. NAFLD associated with HHC was modeled in 7 groups of rats by applying high fat diet with simultaneous administration of Homocysteine thiolactone (100 mg / kg / intragastrically) for 60 days. From the 61st day and till the end of the experiment, 6 groups of rats with NAFLD + HHC had a standard diet. On this background, the animals of 4 groups were treated by lipid-lowering drugs - Simvastatin or ω-3 PUFAs remedy.

The levels of Homocysteine, TNF-α and IGF-1 in bloodserum, as well as the content of triglycerides, cholesterol, phospholipids, hydroxyproline and H2S in rat liver were determined.

Results. The use of Simvastatin did not cause statistically significant changes in the levels of Homocysteine, TNFα in blood serum and H2S content in the liver, but it led to IGF-1 worsening deficits in blood serum. At the same time, the use of PUFA ω-3 resulted in a significant reduction in the levels of Homocysteine, TNFα and increase in the levels of IGF-1 in serum and H2S in rat liver. Anti-steatosis and anti-fibrous effects of ω-3 PUFA remedy were significantly higher comparing to Simvastatin.

Conclusion. Therefore, PUFA ω-3 drug significantly exceeds Simvastatin by hypohomocystinemic effect, more effectively reduces TNFα in blood serum and increases the H2S content in liver, and stimulates an IGF-1 level increase in blood serum, while Simvastatin enhances its deficit

Author Biographies

Natalia Zaichko, National Pirogov Memorial Medical University Pirohova str., 56, Vinnytsya, Ukraine, 21018

MD, Head of Department

Department of Biological and General Chemistry

Dar`ia Nekrut, National Pirogov Memorial Medical University Pirohova str., 56, Vinnytsya, Ukraine, 21018

Postgraduate Student

Department of Clinical Pharmacy and Clinical Pharmacology

References

  1. Babak, O. J., Kolesnikova, E. V. (2012). Nealkogol'naja zhirovaja bolezn' pecheni i kardiovaskuljarnyj risk: sovremennyj vzgljad na problemu, optimizacija terapii [Non-alcoholic fatty liver disease and cardiovascular risk: a modern view of the problem, optimization of therapy]. Gastroenterology, 5, 68–70.
  2. Adaptovana klinichna nastanova «Nealkoholna zhyrova khvoroba pechinky» [Adapted clinical guidelines "Nonalcoholic fatty liver disease"]. Ministry of Health of Ukraine, No. 826. Available at: http://mtd.dec.gov.ua/images/dodatki/2014_826Gepatyty/2014_826_AKN_ANGHP.pdf
  3. Ahmed, M. (2015). Non-alcoholic fatty liver disease in 2015. World Journal of Hepatology, 7 (11), 1450. doi: 10.4254/wjh.v7.i11.1450
  4. Velychko, V. I., Kolotvina, L. I., Hur’iev, A. M., Klotvin, A. O. (2014). Ozhyrinnia i nealkoholna zhyrova khvoroba pechinky z pozytsii kardiovaskuliarnoho ryzyku v praktytsi simeinoho likaria [Obesity and nonalcoholic fatty liver disease with cardiovascular risk positions in the practice of family doctor]. Medicine of Ukrainian transport, 1, 79–82.
  5. Pentiuk, N. O. (2011). Metabolichni predyktory fibrozu pechinky u khvorykh na khronichni hepatyty [Metabolic predictors of liver fibrosis in patients with chronic hepatitis]. Experimental and Clinical Medicine, 1 (50), 134–138.
  6. Zvjaginceva, T. D., Glushhenko, S. V. (2014). Nealkogol'nyj steatogepatit i metody patogeneticheskoj korrekcii [Nonalcoholic steatohepatitis and methods of pathogenetic correction]. International Medical Journal, 20 (2 (78)), 29–32.
  7. Pentiuk, N. O. (2009). Vplyv hiperhomotsysteinemii na formuvannia CCl4-indukovanoho fibrozu pechinky u shchuriv [The influence of hyperhomocysteinemia on formation CCl4-induced liver fibrosis in rats]. Modern gastroenterology, 5 (49), 33–37.
  8. Tan, G., Pan, S., Li, J., Dong, X., Kang, K., Zhao, M. et. al. (2011). Hydrogen Sulfide Attenuates Carbon Tetrachloride-Induced Hepatotoxicity, Liver Cirrhosis and Portal Hypertension in Rats. PLoS ONE, 6 (10), e25943. doi: 10.1371/journal.pone.0025943
  9. Zhang, Q., Zhang, Z. X., Fang, Q. et. al. (2012). Expression and significance of insulin-like growth factor-1 and insulin-like growth factor binding protein-3 in hepatocyte steatosis model. Zhonghua Gan Zang Bing Za Zhi, 20 (3), 196–200.
  10. Zaichko, N. V. (2014). Hydrogen sulfide: metabolism, biological and medical role. The Ukrainian Biochemical Journal, 86 (5), 5–25. doi: 10.15407/ubj86.05.005
  11. Sun, L., Zhang, S., Yu, C., Pan, Z., Liu, Y., Zhao, J. et. al. (2015). Hydrogen sulfide reduces serum triglyceride by activating liver autophagy via the AMPK-mTOR pathway. American Journal of Physiology – Endocrinology and Metabolism, 309 (11), E925–E935. doi: 10.1152/ajpendo.00294.2015
  12. Inzaghi, E., Cianfarani, S., Nobili, V. (2014). Insulin-like growth factors (IGF-I and -II): new actors in the development of non-alcoholic fatty liver disease. Expert Review of Endocrinology & Metabolism, 9 (3), 193–195. doi: 10.1586/17446651.2014.900438
  13. Aguirre, G. A., De Ita, J. R., de la Garza, R. G., Castilla-Cortazar, I. (2016). Insulin-like growth factor-1 deficiency and metabolic syndrome. Journal of Translational Medicine, 14 (1). doi: 10.1186/s12967-015-0762-z
  14. Chalasani, N., Younossi, Z., Lavine, J. E., Diehl, A. M., Brunt, E. M., Cusi, K. et. al. (2012). The Diagnosis and Management of Non-alcoholic Fatty Liver Disease: Practice Guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. The American Journal of Gastroenterology, 107 (6), 811–826. doi: 10.1038/ajg.2012.128
  15. Unifikovanyj klinichnyj protokol pervynnoi', vtorynnoi' (specializovanoi') medychnoi' dopomogy. Nealkogol'nyj steatogepatyt (2014). Order of the Ministry of Health of Ukraine, No. 826. Available at: http://mtd.dec.gov.ua/images/dodatki/2014_826Gepatyty/2014_826_YKPMD_NSTPT.pdf
  16. Pooya, S., Jalali, M. D., Jazayery, A. D., Saedisomeolia, A., Eshraghian, M. R., Toorang, F. (2010). The efficacy of omega-3 fatty acid supplementation on plasma homocysteine and malondialdehyde levels of type 2 diabetic patients. Nutrition, Metabolism and Cardiovascular Diseases, 20 (5), 326–331. doi: 10.1016/j.numecd.2009.04.002
  17. Soboleva, E. V. (2007). Gomocisteinemija kak mishen' terapevticheskogo vozdejstvija u bol'nyh ishemicheskoj bolezn'ju serdca. Jeffekty simvastatina [Homocysteinemia as a target of therapeutic effect in patients with coronary heart disease. Effects of simvastatin]. RMJ, 5, 340.
  18. Vladimirova-Kitova, L. G., Deneva, T. I., Marinov, B. (2010). Effect of Moderate and High-Dose Simvastatin on Asymmetric Dimethylarginine-Homocysteine Metabolic Pathways in Patients with Newly Detected Severe Hypercholesterolemia. Cardiovascular Therapeutics, 29 (5), 340–348. doi: 10.1111/j.1755-5922.2010.00149.x
  19. Jiang, S., Chen, Q., Venners, S. A., Zhong, G., Hsu, Y.-H., Xing, H. et. al. (2013). Effect of Simvastatin on Plasma Homocysteine Levels and Its Modification by MTHFR C677T Polymorphism in Chinese Patients with Primary Hyperlipidemia. Cardiovascular Therapeutics, 31 (4), e27–e33. doi: 10.1111/1755-5922.12002
  20. Nekrut, D. O. (2016). Vplyv hiperhomotsysteinemii na formuvannia nealkoholnoi zhyrovoi khvoroby pechinky u shchuriv [Influence of hyperhomocysteinemia on nonalcoholic fatty liver disease formation in rats]. Visnyk morfolohii, 22 (1), 40–45.
  21. Wilinski, B., Wilinski, J., Somogyi, E., Piotrowska, J., Goralska, M., Macura, B. (2011). Carvedilol Induces Endogenous Hydrogen Sulfide Tissue Concentration Changes in Various Mouse Organs. Folia Biologica, 59 (3), 151–155. doi: 10.3409/fb59_3-4.151-155
  22. Pentiuk, А. А., Gutcol, V. I., Iakovleva, O. A. (1987). Opredelenie fosfolipidov po obrazovaniiu gidrofobnogo kompleksa s ferotiotcianatom ammoniia [Determination of phospholipids by the formation of a hydrophobic complex with ammonium ferrotiocyanate]. Lab. delo, 6, 457–459.
  23. Siddiqi, N. J., Alhomida, A. S. (2003). Investigation into the Distribution of Total, Free, Peptide-bound, Protein-bound, Soluble-and Insoluble-Collagen Hydroxyproline in Various Bovine Tissues. BMB Reports, 36 (2), 154–158. doi: 10.5483/bmbrep.2003.36.2.154
  24. Martinez-Vega, R., Partearroyo, T., Vallecillo, N., Varela-Moreiras, G., Pajares, M. A., Varela-Nieto, I. (2015). Long-term omega-3 fatty acid supplementation prevents expression changes in cochlear homocysteine metabolism and ameliorates progressive hearing loss in C57BL/6J mice. The Journal of Nutritional Biochemistry, 26 (12), 1424–1433. doi: 10.1016/j.jnutbio.2015.07.011
  25. Huang, T., Wahlqvist, M. L., Li, D. (2010). Docosahexaenoic acid decreases plasma homocysteine via regulating enzyme activity and mRNA expression involved in methionine metabolism. Nutrition, 26 (1), 112–119. doi: 10.1016/j.nut.2009.05.015
  26. Huang, T., Wahlqvist, M. L., Li, D. (2012). Effect of n-3 polyunsaturated fatty acid on gene expression of the critical enzymes involved in homocysteine metabolism. Nutrition Journal, 11 (1). doi: 10.1186/1475-2891-11-6
  27. Mikael, L. G., Rozen, R. (2008). Homocysteine modulates the effect of simvastatin on expression of ApoA-I and NF- B/iNOS. Cardiovascular Research, 80 (1), 151–158. doi: 10.1093/cvr/cvn157
  28. Sekine, Y., Furuya, Y., Nishii, M., Koike, H., Matsui, H., Suzuki, K. (2008). Simvastatin inhibits the proliferation of human prostate cancer PC-3 cells via down-regulation of the insulin-like growth factor 1 receptor. Biochemical and Biophysical Research Communications, 372 (2), 356–361. doi: 10.1016/j.bbrc.2008.05.043
  29. Shibata, T., Tamura, M., Kabashima, N., Serino, R., Tokunaga, M., Matsumoto, M. et. al. (2009). Fluvastatin attenuates IGF-1-induced ERK1/2 activation and cell proliferation by mevalonic acid depletion in human mesangial cells. Life Sciences, 84 (21-22), 725–731. doi: 10.1016/j.lfs.2009.02.022
  30. Forbes, K., Shah, V. K., Siddals, K., Gibson, J. M., Aplin, J. D., Westwood, M. (2014). Statins inhibit insulin-like growth factor action in first trimester placenta by altering insulin-like growth factor 1 receptor glycosylation. MHR: Basic Science of Reproductive Medicine, 21 (1), 105–114. doi: 10.1093/molehr/gau093
  31. Jang, H., Hong, E., Park, S., Byun, H., Koh, D., Choi, M. et. al. (2016). Statin induces apoptosis of human colon cancer cells and downregulation of insulin-like growth factor 1 receptor via proapoptotic ERK activation. Oncology Letters, 12 (1), 250–256. doi: 10.3892/ol.2016.4569
  32. Tran, L. V., Malla, B. A., Sharma, A. N., Kumar, S., Tyagi, N., Tyagi, A. K. (2016). Effect of omega-3 and omega-6 polyunsaturated fatty acid enriched diet on plasma IGF-1 and testosterone concentration, puberty and semen quality in male buffalo. Animal Reproduction Science, 173, 63–72. doi: 10.1016/j.anireprosci.2016.08.012
  33. Gholamhosseini, S., Nematipour, E., Djazayery, A., Javanbakht, M. H., Koohdani, F., Zareei, M., Djalali, M. (2015). ω-3 fatty acid differentially modulated serum levels of IGF1 and IGFBP3 in men with CVD: A randomized, double-blind placebo-controlled study. Nutrition, 31 (3), 480–484. doi: 10.1016/j.nut.2014.09.010

Published

2017-04-29

How to Cite

Zaichko, N., & Nekrut, D. (2017). Influence of hypolipidemic agents on the level of steatogenic and fibrogenic modulators in rats with non-alcoholic fatty liver disease associated with hyperhomocysteinemia. ScienceRise: Medical Science, (4 (12), 18–24. https://doi.org/10.15587/2519-4798.2017.100177

Issue

Section

Medical Science