Vishnu Narayan Mishra

Indira Gandhi National Tribal University, Amarkantak, India
Professor, Head of Department
Department of Mathematics

Scopus ID: 16069128200
Researcher ID: GAC-0009-2022
Google Scholar profile:
link
ORCID ID: http://orcid.org/0000-0002-2159-7710

Selected Publications:

  1. Alsinai, A., Saleh, A., Ahmed, H., Mishra, L. N., Soner, N. D. (2022). On fourth leap Zagreb index of graphs. Discrete Mathematics, Algorithms and Applications, 15 (2). doi: https://doi.org/10.1142/s179383092250077x

  2. Paul, S. K., Mishra, L. N., Mishra, V. N., Baleanu, D. (2023). An effective method for solving nonlinear integral equations involving the Riemann-Liouville fractional operator. AIMS Mathematics, 8 (8), 17448–17469. doi: https://doi.org/10.3934/math.2023891

  3. Gairola, A. R., Deepmala, Mishra, L. N. (2016). Rate of Approximation by Finite Iterates of q -Durrmeyer Operators. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 86-(2), 229–234. doi: https://doi.org/10.1007/s40010-016-0267-z

  4. Mishra, L. N., Sen, M. (2016). On the concept of existence and local attractivity of solutions for some quadratic Volterra integral equation of fractional order. Applied Mathematics and Computation, 285, 174–183. doi: https://doi.org/10.1016/j.amc.2016.03.002

  5. Mishra, L. N., Mishra, V. N., Khatri, K., Deepmala. (2014). On the trigonometric approximation of signals belonging to generalized weighted Lipschitz W(Lr,ξ(t))(r⩾1)-class by matrix (C1⋅Np) operator of conjugate series of its Fourier series. Applied Mathematics and Computation, 237, 252–263. doi: https://doi.org/10.1016/j.amc.2014.03.085

  6. Mishra, L. N., Agarwal, R. P., Sen, M. (2016). Solvability and Asymptotic Behavior for Some Nonlinear Quadratic Integral Equation Involving Erdelyi-Kober Fractional Integrals on the Unbounded Interval. Progress in Fractional Differentiation and Applications, 2 (3), 153–168. doi: https://doi.org/10.18576/pfda/020301

  7. Mishra, A., Padhy, B. P., Mishra, L. N., Misra, U. (2023). On Degree of Approximation of Signals in the Generalized Zygmund Class by Using (E, r)(N,q_n) Mean. Kragujevac Journal of Mathematics, 47 (1), 131–141. doi: https://doi.org/10.46793/kgjmat2301.131m