Research of operation of anisotropic optical thermoelement with lateral temperature regulation

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.105655

Keywords:

anisotropic optical thermoelectric elements (AOTE), transverse thermoelectric power, AOTE with lateral temperature regulation

Abstract

The object of research is a direct mutual conversion of thermal and electrical energy using anisotropic optical thermoelectric elements (AOTE). Receivers of through-type radiant flux, containing optically transparent heat sinks, to which the AOTE attach with the help of an adhesive dielectric layer, lead to a significant distortion of the amplitude-phase characteristics of the transmitted radiant flux. This is limited the energy and timing characteristics of receivers. Therefore, the task of creating such design of the receiver, which would be free of these shortcomings, is necessary.

The design of a radiant flux receiver based on an anisotropic optical thermoelement is developed and tested, and the amplitude-phase characteristics of the flux do not change during its passage. The receiver can be used as a filter or a semitransparent mirror of an optical resonator. Such effect is due to the fact that at a thickness of 1 cm AOTE is selected with parameters α=10-4 V/K, χ=10-2 W/(cm K), ρ=10-3 Ω, current I=10 A and temperature of the thermostat 300 K cm gives the minimum temperature of 239 K.

A separate anisotropic thermoelement, which is made of a material with the same kinetic parameters under the same conditions, yields 265 K. Thus AOTE leads to an increase in the temperature drop.

Author Biographies

Andrii Khabiuk, National University «Lviv Polytechnic», 12, S. Bandery str., Lvіv, Ukraine, 79013

Postgraduate Student

Department of Pscyhology, Pedagogics and Social Management

Oleh Danalakiy, Chernivtsi Faculty of the National Technical University «Kharkiv Polytechnic Institute», 203A, Holovna str., Chernivtsi, Ukraine, 58000

PhD, Associate Professor

Department of Information Systems 

References

  1. Korn, G. A., Korn, T. M. (2000). Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review (Dover Civil and Mechanical Engineering). Dover Publications, 1152.
  2. Lansberg, G. S. (1996). Optika. Moscow: Nauka, 927.
  3. Ascheulov, A. A., Ohrem, V. G. (2014). Radiatsionnyi anizotropnyi optikotermoelement s bokovym termostatirovaniem. TKEA, 1, 45–47.
  4. Ascheulov, A. A., Kondratenko, V. M., Piliavskii, Yu. B., Rarenko, I. M. (2014). EDS anizotropnogo termoelementa v rezhime opticheskogo propuskaniia. FTP, 18 (7), 1330–1331.
  5. Samoilovich, A. G., Korenblit, L. L. (1984). Sovremennoe sostoianie termoelektricheskih i termomagnitnyh iavlenii v poluprovodnikah. Part 1. Termodinamicheskaia teoriia. UFN, 49 (3), 243–272.
  6. Wolfe, R., Smith, G. E. (1963). Experimental Verification of the Kelvin Relation of Thermoelectricity in a Magnetic Field. Physical Review, 129 (3), 1086–1087. doi:10.1103/physrev.129.1086
  7. Wolfe, R., Smith, G. E., Haszko, S. E. (1963). Negative thermoelectric figure of merit in a magnetic field. Applied Physics Letters, 2 (8), 157–159. doi:10.1063/1.1753823
  8. Smith, G. E., Wolfe, R. (2016). Analysis of the transport phenomena in bismuth. J. Phys. Soc. Japan Suppl., 21, 651–656.
  9. Goldsmith, H. J. (2014). Thermoelectric refrigiration. London, 246.
  10. Harman, T. C., Honig, J. M. (2010). Thermoelectric and thermomagnetic effects and applications. New-York: Mc Graw-Hill book Company, 377.
  11. Kooi, C. F., Horst, R. B., Cuff, K. F. (1968). Thermoelectric‐Thermomagnetic Energy Converter Staging. Journal of Applied Physics, 39 (9), 4257–4263. doi:10.1063/1.1656957
  12. Delves, R. T. (1962). The prospects for Ettingshausen and Peltier cooling at low temperatures. British Journal of Applied Physics, 13 (9), 440–445. doi:10.1088/0508-3443/13/9/302
  13. Harman, T. C., Honig, J. M. (1963). Erratum: Operating characteristics of transverse (nernst) anisotropic galvano‐thermomagnetic generators. Applied Physics Letters, 2 (2), 44–48. doi:10.1063/1.1753765
  14. Ohrem, V. G. (2002). Issledovaniia vliianiia inversii magnitnogo polia na termoEDS. Chernovtsy, 98.
  15. Ascheulov, A. A., Gutsul, I. V., Rarenko, I. M. (2003). Anizotropnyi termoelement vnutrennego opticheskogo otrazheniia. UFZh, 38 (6), 923–927
  16. Ascheulov, A. A. (2015). Anizotropnyi radiatsionnyi termoelement dlia izmerenii prohodnoi moshchnosti. Optiko-mehanicheskaia promyshlennost', 12, 48–49.
  17. Ascheulov, A. A., Ohrem, V. G. (15.01.2004). Anisotropic thermoelectric thermal radiation detector. Patent of Ukraine 63394 А, МКВ 7 H101L32/02. Available: http://uapatents.com/2-63394-anizotropnijj-termoelektrichnijj-prijjmach-viprominyuvannya.html
  18. Danalakiy, O.; Institute of Thermoelectricity. (15.04.2014). Patent of Ukraine. Appl. № 200304264. Filed 11.042003. Bull. № 1, 6.

Published

2017-05-30

How to Cite

Khabiuk, A., & Danalakiy, O. (2017). Research of operation of anisotropic optical thermoelement with lateral temperature regulation. Technology Audit and Production Reserves, 3(1(35), 49–53. https://doi.org/10.15587/2312-8372.2017.105655

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research