Analysis of modern gravimeters of the aviation gravimetric system

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.105698

Keywords:

sensing element, gravimeter, gravity acceleration, gravitational field of the Earth

Abstract

The analysis of existing gravimeters of aviation gravimetric systems (AGS) is carried out. Their main disadvantages are identified: low accuracy of measurement (3–10 mGal), mandatory necessity of application of filtration procedure of output signal of AGS gravimeter; instability of the static transfer coefficient of the AGS gravimeter; low speed. The expediency of using AGS for carrying out gravimetric measurements and obtaining information about the Earth's gravitational field is substantiated. Aerogravimetric surveying requires a significant increase in the accuracy and speed of aviation gravity measurements. Therefore, the study of this issue remains an important problem. To date, there are already theoretical developments and prototypes that almost completely solve all the main disadvantages. Modern advanced developments in the field of aircraft gravimeters are considered: gyroscopic, ballistic, piezoelectric, capacitive, string gravimeters. They are distinguished by high accuracy (1–2 mGal) and speed. It is proposed to use a two-channel (differential) method for GA measurement in all gravimeter designs. Then the useful signal is doubled 2g, and the signals of the main disturbing vertical acceleration, instrumental errors from the influence of changes in temperature, pressure and other environmental factors are canceled.

Author Biographies

Olena Bezvesilna, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03057

Doctor of Technical Sciences

Department of Instrumentation

Larina Chepyuk, Zhytomyr State Technological University, Chernyakhovsky str., 103, Zhуtomуr, Ukraine, 10005

PhD

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

Andriy Tkachuk, Zhytomyr State Technological University, Chernyakhovsky str., 103, Zhуtomуr, Ukraine, 10005

PhD

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

Sergii Nechai, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», Peremohy ave., 37, Kyiv, Ukraine, 03057

PhD, Associate Professor

Department of Instrumentation

Tetiana Khylchenko, Zhytomyr State Technological University, Chernyakhovsky str., 103, Zhуtomуr, Ukraine, 10005

Postgraduate student

Department of automation and computer-integrated technologies named after prof. B. B. Samotokin

References

  1. Bezvesilna, O., Bezvesilna, O., Tkachuk, A., Nowicki, M., Szewczyk, R., Shadura, V. (2015). Aviation gravimetric system. International Journal of Scientific & Engineering Research, 6 (7), 1122–1126.
  2. Gravimetry. Available: http://www.all-pribors.ru/groups/gravimetry-61. Last accessed: 21.01.2017.
  3. Matveev, V. V. (2014). The engineering analysis of lapses of strapdown inertial navigational system. Izvestiia Tul'skogo gosudarstvennogo universiteta. Tehnicheskie nauki, 9 (2), 251–267.
  4. Kaufman, A. A. (2011). Printsipy metoda gravimetrii. Tver', 360.
  5. Bykovskii, A. V., Polynkov, A. V., Arseniev, V. D. (2013). Aerogravimetricheskii metod izmereniia gravitatsionnyh anomalii. Aviakosmicheskoe priborostroenie, 12, 11–19.
  6. Mobil'nyi gravimetr «Chekan-AM». State Research Center of the Russian Federation Concern CSRI Elektropribor, JSC. Available: http://www.elektropribor.spb.ru/prod/rgydro_1. Last accessed: 26.10.2016.
  7. Gravimetry. JSC YUZHMORGEOLOGIYA On land and at sea. Available: http://www.ymg.ru/ru/content/gravimetr. Last accessed: 21.01.2017.
  8. Inertsial'no-gravimetricheskii kompleks MAG-1A. Federal'noe gosudarstvennoe unitarnoe nauchno-proizvodstvennoe predpriiatie «GEOLOGORAZVEDKA». Available: http://geolraz.com/page/GSA-2010/. Last accessed: 18.10.2016.
  9. Strunnyi aerogravimetr «Graviton-M». GNPP «Aerogeophysica». Available: http://www.aerogeo.ru/index.php?option=com_content&view=category&layout=blog&id=25&Itemid=17&lang=ru. Last accessed: 18.10.2016.
  10. Bezvesilna, O., Kaminski, M. (2017). Gravimeters of Aviation Gravimetric System: Classification, Comparative Analysis, Prospects. Automation 2017. Springer International Publishing, 496–504. doi:10.1007/978-3-319-54042-9_48
  11. Gravimetr CG-5 AutoGrav. Geotsentr-Moskva. Available: http://geocentr-msk.ru/content/view/441/137. Last accessed: 18.010.2016.
  12. Aerogravimetr GT-2A. GNPP «Aerogeophysica». Available: http://www.aerogeo.ru/index.php?option=com_content&view=category&layout=blog&id=25&Itemid=17&lang=ru. Last accessed: 18.10.2016.
  13. TAGS-6 Gravity Meter (Turnkey Airborne Gravity System) with Aerograv Data Processing Software. Micro-g LaCoste, Inc. Available: http://www.microglacoste.com/tags-6.php. Last accessed: 26.10.2016.
  14. Bykovskii, A. V., Polynkov, A. V. (2013). K voprosu o razrabotke malogabaritnogo aerogravimetra. Vestnik MGTU im. N. E. Baumana, 2 (14), 32–41.
  15. Osborne, I. S. (2016). An on-chip cold-atom gravimeter. Science, 354(6317), 1246–1247. doi:10.1126/science.354.6317.1246-f
  16. Afonin, A. A., Sulakov, A. S., Yamashev, G. G., Mihailin, D. A., Mirzoian, L. A., Kurmakov, D. V. (2013). O vozmozhnosti postroeniia besplatformennogo upravliaiushchego navigatsionno-gravimetricheskogo kompleksa bespilotnogo letatel'nogo apparata. Trudy MAI, 66, 47–53.
  17. Huang, Y., Olesen, A. V., Wu, M., Zhang, K. (2012). SGA-WZ: A New Strapdown Airborne Gravimeter. Sensors, 12 (12), 9336–9348. doi:10.3390/s120709336
  18. Kazama, T., Hayakawa, H., Higashi, T., Ohsono, S., Iwanami, S., Hanyu, T., Ohta, H., Doi, K., Aoyama, Y., Fukudaa, Y., Nishijimag, J., Shibuya, K. (2013). Gravity measurements with a portable absolute gravimeter A10 in Syowa Station and Langhovde, East Antarctica. Polar Science, 7 (3-4), 260–277. doi:10.1016/j.polar.2013.07.001
  19. Calvo, M., Hinderer, J., Rosat, S., Legros, H., Boy, J.-P., Ducarme, B., Zurn, W. (2014). Time stability of spring and superconducting gravimeters through the analysis of very long gravity records. Journal of Geodynamics, 80, 20–33. doi:10.1016/j.jog.2014.04.009
  20. Agostino, G. D., Desogus, S., Germak, A., Origlia, C., Quagliotti, D., Berrino, G., Corrado, G., Derrico, V., Ricciardi, G. (2008). The new IMGC-02 transportable absolute gravimeter: measurement apparatus and applications in geophysics and volcanology. Annals of geophysics, 51 (1), 39–49.
  21. Roussel, C., Verdun, J., Cali, J., Maia, M., d’ EU, J. F. (2015). Integration of a strapdown gravimeter system in an autonomous underwater vehicle. ISPRS – International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-5/W5, 199–206. doi:10.5194/isprsarchives-xl-5-w5-199-2015
  22. Hudzinskiy, L. L., Bartashevich, L. M., Sorokin, V. L. (2002). Issledovanie absolyutnogo ballisticheskogo gravimetra i puti povysheniya tochnosti izmereniy. Vseros. nauch. konf. Geologiya, geohimiya i geofizika na rubezhe ХХ i ХХI vekav. Vol. 3.
  23. Bezvesilna, O., Tkachuk, A., Chepyuk, L., Nechai, S., Khylchenko, T. (2017). Introducing the principle of constructing an aviation gravimetric system with any type of gravimeter. Eastern-European Journal of Enterprise Technologies, 1 (7 (85)), 45–56. doi:10.15587/1729-4061.2017.92941
  24. Bezvesilna, O., Nowicki, M., Szewczyk, R., Tkachuk, A. (2015). System of aviation gravimeter. International Journal of Scientific&Engineering Research, 6 (8), 956–958.
  25. Bezvesilnaya, E. N., Tkachuk, A. H. (2014). Corrected gyrocompass synthesis as a system with changeable structure for aviation gravimetric system with piezoelectric gravimeter. Aviation, 18 (3), 134–140. doi:10.3846/16487788.2014.969878
  26. Korobiichuk, I., Bezvesilna, O., Tkachuk, A., Chilchenko, T., Nowicki, M., Szewczyk, R. (2016). Design of Piezoelectric Gravimeter for Automated Aviation Gravimetric System. Journal of Automation, Mobile Robotics & Intelligent Systems, 10 (1), 43–47. doi:10.14313/jamris_1-2016/6
  27. Korobiichuk, I., Bezvesilna, O., Kachniarz, M., Tkachuk, A., Chilchenko, T. (2016). Two-Channel MEMS Gravimeter of the Automated Aircraft Gravimetric System. Advances in Intelligent Systems and Computing, 481–487. doi:10.1007/978-3-319-48923-0_51
  28. Korobiichuk, I., Bezvesilna, O., Nowicki, M., Szewczyk, R. (2015). Filtering of the output signal of dynamicallytuned gravimeters. International Journal of Scientific & Engineering Research, 6 (7), 1332–1338.
  29. Korobiichuk, I., Bezvesilna, O., Nowicki, M., Szewczyk, R. (2015). The goniometeronlasergyrobase. International Journal of Scientific&Engineering Research, 6 (9), 256–258
  30. Meurers, B. (2017). Scintrex CG5 used for superconducting gravimeter calibration. Geodesy and Geodynamics. doi:10.1016/j.geog.2017.02.009

Published

2017-05-30

How to Cite

Bezvesilna, O., Chepyuk, L., Tkachuk, A., Nechai, S., & Khylchenko, T. (2017). Analysis of modern gravimeters of the aviation gravimetric system. Technology Audit and Production Reserves, 3(1(35), 53–59. https://doi.org/10.15587/2312-8372.2017.105698

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research