Minimization of Boolean functions by combinatorial method

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.108532

Keywords:

Boolean function, minimization method, minimization of a logical function, block diagram with repetition, minterm

Abstract

The object of solving the problem of minimizing the Boolean function in this work is a block diagram with repetition, what is the truth table of the given function. This allows to leave the minimization principle within the function calculation protocol and, thus, dispense with auxiliary objects like algebraic expressions, Karnaugh map, Veitch diagram, acyclic graph, etc. The algebraic transformations of conjunctors are limited to the verbal form of information, they require active decoding, processing and the addition of algebraic data, therefore, as the number of variable variables increases and the resource of such minimization method is quickly exhausted. In turn, the mathematical apparatus of the combinatorial block diagram with repetition gives more information about the orthogonality, contiguity, uniqueness of truth table blocks, so the application of such minimization system of the Boolean function is more efficient. Equivalent transformations by graphic images, in their properties have a large information capacity, capable of effectively replacing verbal procedures of algebraic transformations. The increased information capacity of the combinatorial method makes it possible to carry out manual minimization of 4, 5-bit Boolean functions quite easily.

Using a block diagram with repetition in tasks of minimizing Boolean function is more advantageous in comparison with analogues for the following factors:

– lower cost of development and implementation, since the principle of minimization of the method remains within the truth table of this function and does not require other auxiliary objects;

– increasing the performance of the manual minimization procedure for 4-, 5-bit functions and increasing the performance of automated minimization with a greater number of variable functions, in particular due to the fact that several search options give the same minimum function.

The combinatorial method for minimizing Boolean functions can find practical application in the development of electronic computer systems, because:

– DNF minimization is one of the multiextremal logical-combinatorial problems, the solution of which is, in particular, the combinatorial device of block-schemes with repetition;

– expands the possibilities of Boolean functions minimization technology for their application in information technology;

– improves the algebraic method of minimizing the Boolean function due to the tabular organization of the method and the introduction of the device of figurative numeration;

– the minimum function can be obtained by several search options that reduces the complexity of the search algorithm, and is the rationale for developing a corresponding function minimization protocol.

Author Biographies

Volodymyr Riznyk, Lviv Polytechnic National University, 12, S. Bandery str., 11, Lviv, Ukraine, 79013

Doctor of Technical Sciences, Professor

Department of Control Aided Systems

Mykhailo Solomko, National University of Water and Environmental Engineering, 11, Soborna str., Rivne, Ukraine, 33028

PhD, Associate Professor

Department of Computer Engineering

References

  1. Matviienko, M. P. (2012). Kompiuterna lohika. Kyiv: TOV «Tsentr navchalnoi literatury», 288.
  2. Igoshin, V. I. (2007). Matematicheskaia logika i teoriia algoritmov. Moscow: Izdatel'skii tsentr «Akademiia», 304.
  3. Kutiura, L. (2011). Algebra logiki. Moscow: Librokom, 128.
  4. Kolmogorov, A. N., Dragalin, A. G. (2006). Matematicheskaia logika. Ed. 3. Moscow: KomKniga, 240.
  5. Venn, J. (1880). I.On the diagrammatic and mechanical representation of propositions and reasonings. Philosophical Magazine Series 5, 10 (59), 1–18. doi:10.1080/14786448008626877
  6. Nelson, V. P., Troy Nagle, H., Carroll, B. D., Irwin, D. (1995). Digital Logic Circuit Analysis and Design. Pearson, 842.
  7. Manojlovic, V. (2013). Minimization of Switching Functions using Quine-McCluskey Method. International Journal of Computer Applications, 82 (4), 12–16. doi:10.5120/14103-2127
  8. Rytsar, B. (2015). The Minimization Method of Boolean Functions in Polynomial Set-theoretical Format. Conference: Proc. 24th Inter. Workshop, CS@P’2015, Sept. 28–30, 2015, Vol. 2. Poland, Rzeszow, 130–146. Available: http://dspace.nbuv.gov.ua/handle/123456789/87194
  9. Rathore, T. S. (2014). Minimal Realizations of Logic Functions Using Truth Table Method with Distributed Simplification. IETE Journal of Education, 55 (1), 26–32. doi:10.1080/09747338.2014.921412
  10. Rotar, D. (2010). Software for The Minimization of The Combinational Logic Functions. The Romanian Review Precision Mechanics, Optics & Mechatronics, 37, 95–99.
  11. Bernasconi, A., Ciriani, V., Luccio, F., Pagli, L. (2003). Three-level logic minimization based on function regularities. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 22 (8), 1005–1016. doi:10.1109/tcad.2003.814950
  12. Zolfaghari, B., Sheidaeian, H. (2011). A New Case for Image Compression Using Logic Function Minimization. The International Journal of Multimedia & Its Applications, 3 (2), 45–62. doi:10.5121/ijma.2011.3204
  13. Mohana Ranga Rao, R. (2011). An Innovative procedure to minimize Boolean function. International Journal of Advanced Engineering Sciences and Technologies, 3 (1), 12–14.
  14. Nosrati, M., Karimi, R., Nariri, M. (2012). Minimization of Boolean Functions Using Genetic Algorithm. Annals. Computer Science Series, 10 (1), 73–77.
  15. Nosrati, M., Nariri, M. (2011). An Algorithm for Minimizing of Boolean Functions Based on Graph DS. World Applied Programming, 1 (3), 209–214.
  16. Solairaju, A., Periyasamy, R. (2011). Optimal Boolean Function Simplification through K-Map using Object-Oriented Algorithm. International Journal of Computer Applications, 15 (7), 28–32. doi:10.5120/1959-2621
  17. Buniak, A. (2001). Elektronika ta mikroskhemotekhnika. Ternopil: Aston, 382.
  18. Tonchev, V. (1988). Kombinatornye konfiguratsii. Blok-shemy, kody, grafy. Kyiv: Holovne vydavnytstvo vydavnychoho obiednannia «Vyshcha shkola», 178.
  19. Plehanov, A. (2016, March 8). Simmetrichnye karty kak sredstvo minimizatsii bulevyh funktsii. Geektimes. Available: https://geektimes.ru/post/272294/
  20. Sudnitson, A. (2008). Diskretnaia matematika. F.4. Minimizatsiia bulevyh funktsii. Available: http://ati.ttu.ee/~alsu/DM%20_MinBF_2008_lecture.pdf. Last accessed: 15.07.2017.
  21. Kudriavtsev, V. B., Andreev, A. E. (2006). O slozhnosti algoritmov. Intellektual'nye sistemy, 10 (1-4), 695–760. Available: http://intsys.msu.ru/magazine/archive/v10(1-4)/andreev-695-760.pdf
  22. Nechiporuk, E. I. (1968). O korrektnosti obryvov v ventil'nyh i kontaktnyh shemah. Kibernetika, 5, 40–48.
  23. Redkin, N. P. (1978). O samokorrektirovanii kontaktnyh shem. Problemy kibernetiki, 33, 119–138.
  24. Kirienko, G. I. (1970). Sintez samokorrektiruiushchihsia shem iz funktsional'nyh elementov dlia sluchaia rastushchego chisla oshibok v sheme. Diskretnyi analiz, 16, 38–43.
  25. Serikov, Yu. A. (1972). Algebraicheskii metod resheniia logicheskih uravnenii. Izvestiia AN SSSR. Tehnicheskaia kibernetika, 2, 114–124.
  26. Zhabin, V. I., Zhukov, I. A., Klymenko, I. A., Tkachenko, V. V. (2009). Prykladna teoriia tsyfrovykh avtomativ. Ed. 2. Kyiv: Vydavnytstvo Natsionalnoho aviatsiinoho universytetu «NAU – druk», 360.
  27. Bitiutskii, V. P., Grigorieva, S. V. (2012). Minimizatsiia perekliuchatel'nyh funktsii. Ekaterinburg: UrFU, 22. Available: http://docplayer.ru/46853788-Minimizaciya-pereklyuchatelnyh-funkciy.html
  28. Amerbaev, V. M., Solovyev, R. A., Telpukhov, D. V. (2013). Library implementation of modular arithmetic operations, based on logic functions minimization algorithms. Izvestiya SFedU. Engineering Sciences, 7, 221–225. Available: http://izv-tn.tti.sfedu.ru/wp-content/uploads/2013/7/40.pdf

Published

2017-07-25

How to Cite

Riznyk, V., & Solomko, M. (2017). Minimization of Boolean functions by combinatorial method. Technology Audit and Production Reserves, 4(2(36), 49–64. https://doi.org/10.15587/2312-8372.2017.108532

Issue

Section

Mathematical Modeling: Original Research