Reduction of technological risks of flight operation by artificial formation of the buffer zone to penetrating acoustic radiation

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.108546

Keywords:

aberration, caustic zone, wave coincidence, buffer zone, polyaggregate construction

Abstract

The possibility of reducing technological risks from the effect of penetrating acoustic radiation on flight equipment of flight elements is analyzed. The object of research is the process of elastic interaction of an ultrasonic beam with a metal bush in the form of two identical lengths and different shell radii connected at the ends by flat rings, the internal gap between them is filled with liquid. The disadvantage of the proposed technical solution is to recognize some complication in the design of the float gyro. Results of semi-detailed experimental studies of the float gyroscope in an acoustic medium are presented. As shown by experimental studies, the equipment of the float gyro from outside the thermal casing by a bush of two coaxial, identical lengths, circular shells makes it possible, with artificial irradiation with ultrasonic waves of the outer shell, to create conditions for formation of a caustic zone in the liquid between the shell spaces. This will lead to the creation of an increased energy state relative to the initial state, in the form of a surface coaxial with the internal cavity of the device body. The attainment of the incidence angle equal to the coincidence angle of the wave of the ultrasonic beam allows the outer shell to be converted into an acoustically transparent design. Thus, the entire energy of the ultrasonic radiator will go to the formation of the maximum energy state of the inter-shell liquid turbulent in structure and the available cavitation spaces. This will create a buffer zone for the propagation of external acoustic waves, in which intense dissipation of its energy takes place, and thus the level of the acoustic radiation passing through the device is reduced to zero. At the wave coincidence angle θс=10 degree, the offset of the output signal of the device is 1.24 mV. The measurement error is Δωav≈0.00282 degree·s-1.

Author Biographies

Volodimir Karachun, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Biotechnics and Engineering

Viktorij Mel’nick, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of Department

Department of Biotechnics and Engineering

Sergii Fesenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Postgraduate Student

Department of Biotechnics and Engineering

References

  1. Lighthill, M. J. (1952). On Sound Generated Aerodynamically. I. General Theory. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 211 (1107), 564–587. doi:10.1098/rspa.1952.0060
  2. Lighthill, M. J. (1954). On Sound Generated Aerodynamically. II. Turbulence as a Source of Sound. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 222 (1148), 1–32. doi:10.1098/rspa.1954.0049
  3. Brehovskih, L. M. (1973). Volny v sloistyh sredah. Moscow: Nauka, 344.
  4. Gusev, V. P., Osinskii, A. I. (1981). Ustroistvo dlia podavleniia shuma. A. s. No. 8836652. Bull. No. 21, 1.
  5. Ingerslev, F. (1957). Akustika v sovremennoi stroitel'noi tehnike. Moscow: Gosstroiizdat, 295.
  6. Karachun, V. (1986). Kolebaniia poristyh plastin pod deistviem akusticheskih vozmushchenii. Prikladnaia mehanika, 22 (3), 43–46.
  7. Belyi, N. G. (1970). Issledovanie akusticheskoi vynoslivosti naturnyh panelei tonkostennyh obolochek. Akusticheskaia vynoslivost', 1222.
  8. Matohniuk, L. E., Kashtalian, A. Yu. (1972). Eksperimental'noe issledovanie napriazhenii v plastinah pod vozdeistviem akusticheskih nagruzhenii. Problemy prochnosti, 1, 59–62.
  9. Matohniuk, L. E., Kashtalian, Yu. A., Samgin, V. A. (1971). Issledovanie vynoslivosti splava D16AMO pri akusticheskom nagruzhenii. Problemy prochnosti, 9, 116–120.
  10. Mel’nick, V., Karachun, V. (2008). Nelineinye kolebaniia v poliagregatnom podvese giroskopa. Kyiv: Korneichuk, 104.
  11. Mel’nick, V., Karachun, V. (2016). The emergence of resonance within acoustic fields of the float gyroscope suspension. Eastern-European Journal of Enterprise Technologies, 1(7(79)), 39–44. doi:10.15587/1729-4061.2016.59892
  12. Barman, K., Debnath, K., Mazumder, B. S. (2016). Turbulence between two inline hemispherical obstacles under wave–current interactions. Advances in Water Resources, 88, 32–52. doi:10.1016/j.advwatres.2015.12.001
  13. Yairi, M., Koga, T., Takebayashi, K., Sakagami, K. (2014). Transmission of a spherical sound wave through a single-leaf wall: Mass law for spherical wave incidence. Applied Acoustics, 75, 67–71. doi:10.1016/j.apacoust.2013.06.015
  14. Yu, M. S., Song, J., Bae, J. C., Cho, H. H. (2012). Heat transfer by shock-wave/boundary layer interaction on a flat surface with a mounted cylinder. International Journal of Heat and Mass Transfer, 55 (5-6), 1764–1772. doi:10.1016/j.ijheatmasstransfer.2011.11.033
  15. Chang, Z., Guo, D., Feng, X.-Q., Hu, G. (2014). A facile method to realize perfectly matched layers for elastic waves. Wave Motion, 51 (7), 1170–1178. doi:10.1016/j.wavemoti.2014.07.003
  16. Talebitooti, R., Choudari Khameneh, A. M. (2017). Wave propagation across double-walled laminated composite cylindrical shells along with air-gap using three-dimensional theory. Composite Structures, 165, 44–64. doi:10.1016/j.compstruct.2016.12.068
  17. Morvaridi, M., Brun, M. (2016). Perfectly matched layers for flexural waves: An exact analytical model. International Journal of Solids and Structures, 102-103, 1–9. doi:10.1016/j.ijsolstr.2016.10.024
  18. Zhou, J., Bhaskar, A., Zhang, X. (2015). Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation. Journal of Sound and Vibration, 357, 253–268. doi:10.1016/j.jsv.2015.07.014
  19. Boyko, G. (2014). The possibility of sound wave low-frequency resonance formation in float gyroscope. Technology Audit and Production Reserves, 6(4(20)), 10–12. doi:10.15587/2312-8372.2014.29867
  20. Boiko, G. V. (2014). Coincidence resonance in hypersound flight conditions. Kosmìčna Nauka ì Tehnologìâ, 20(3(88)), 28–33. doi:10.15407/knit2014.03.028
  21. Shenderov, E. L. (1972). Volnovye zadachi gidroakustiki. Leningrad: Sudostroenie, 352.
  22. Zaborov, V. I. (1969). Teoriia zvukoizoliatsii ograzhdaiushchih konstruktsii. Ed. 2. Moscow: Izdatel'stvo literatury po stroitel'stvu, 187.

Published

2017-07-25

How to Cite

Karachun, V., Mel’nick, V., & Fesenko, S. (2017). Reduction of technological risks of flight operation by artificial formation of the buffer zone to penetrating acoustic radiation. Technology Audit and Production Reserves, 4(1(36), 19–24. https://doi.org/10.15587/2312-8372.2017.108546

Issue

Section

Mechanics: Original Research