Information support for processes of quality functionals measurement in the CAD of casting of steel castings in sand molds

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.112537

Keywords:

foundry, quality of castings, measurement of parameters, complex functional, quality criterion

Abstract

It is shown that the design and management of foundry technology due to its multifactoriness, intensity and inaccessibility for measurements is extremely difficult, which means that a significant number of castings in real production are rejected.

A method is proposed for using instead of particular parameters the functional that unites them, which is also used as a dimensionless numerical criterion for the defectiveness of casts. The method is tested in real production with a positive technical effect.

The work is devoted to improving the quality of steel castings obtained in sand molds. An increase in the efficiency of designing and improving the management of the process of their manufacture through the development and implementation of new metrological support has been achieved. Its purpose is measurement of the functional criterion in the system «steel casting – sand mold».

To achieve this aim, an analysis of the parameter-functional «gas removal» in the system «casting – sand mold» is made. The accuracy and reliability of the use of the complex parameter-functional as a criterion of defect-free casting is estimated. The estimation of accuracy and reliability performed by the proposed method shows that the measurement error of the «gas removal» functional under the conditions of steel casting described above in sandy-resin forms does not exceed 8 %. This is quite acceptable for this type of technical applications, and also with a probability of not less than 0.85, reliably guarantees the high quality of the casting surface, both in the absence of sand burning and in the absence of blown holes.

Author Biographies

Alexandr Stanovskyi, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Doctor of Technical Science, Professor

Department of Oilgas and Chemical Mechanical Engineering

Marianna Dukhanina, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Computer-Aided Design Technologies

Viktoriya Dobrovolska, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Oilgas and Chemical Mechanical Engineering

References

  1. Baranov, V. V. Tehnologicheskii audit predpriiatiia v semi shagah. NP TsDO «ELITARIUM». Available at: http://www.elitarium.ru/tekhnologicheskijj_audit_predprijatija/. Last accessed: 03.05.2016.
  2. Dulnev, G. N., Novikov, V. V. (1991). Protsessy perenosa v neodnorodnyh seredah.Moscow: Energoatomizdat, 248.
  3. Dulnev, G. N., Zarichniak, Yu. P. (1974). Teploprovodnost' smesei i kompozitsionnyh materialov.Leningrad: Energiia, 264.
  4. Types of experiments. Available at: http://psc.dss.ucdavis.edu/sommerb/sommerdemo/experiment/types.htm. Last accessed: 25.12.2014.
  5. Oborsky, G. A., Riazantsev, V. M., Shihireva, Yu. V. (2013). Izmerenie parametrov vnutrennih teplovyh protsessov po infrakrasnym videopotokam ot poverhnosti detali. Modern technologies in mechanical engineering, 8, 124–132.
  6. Stanovsky, P., Bovnegra, L., Shihіreva, Yu. (2012). Automated monitoring of the flow of technological processes with low-frequency streams. Zbirnyk naukovykh prats Kirovohradskoho natsionalnoho tekhnichnoho universytetu. Tekhnika v silskohospodarskomu vyrobnytstvi, haluzeve mashynobuduvannia, avtomatyzatsiia, 25 (II), 70–74.
  7. Jou, D., Casas-Vazquez, J., Lebon, G. (1993). Extended Irreversible Thermodynamics. Berlin, Heidelberg: Springer, 321. doi:10.1007/978-3-642-97430-4
  8. Cui, X., Bustin, A. M. M., Bustin, R. M. (2009). Measurements of gas permeability and diffusivity of tight reservoir rocks: different approaches and their applications. Geofluids, 9 (3), 208–223. doi:10.1111/j.1468-8123.2009.00244.x
  9. Prokopovich, I., Duhanina, M., Stanovskа, I., Walid Sher, H., Dobrovolska, V., Toropenko, O. (2016). Metrological assurance of control density heterogeneous materials. Bulletin of NTU «KhPI». Series: Mechanical-technological systems and complexes, 50 (1222), 22–28.
  10. Oborsky, G., Stanovskyi, A., Prokopovych, I., Shmaraiev, O., Dukhanina, M. (2016). The express method of bimetallic castings defects measurement with the use of vortex-current effect. ScienceRise, 5(2 (22)), 70–76. doi:10.15587/2313-8416.2016.69150
  11. Lysenko, T. V., Prokopovich, I. V., Korjachenko, A. A. (2011). Application of structural identifiers in foundry manufacture. High technologies of machine-building, 1 (21), 185–190.
  12. Prokopovich, I. V., Koriachenko, A. A., Stanovska, I. I. (2011). Systema yntellektualnoho monytorynha protsessa lytia. Visnyk Odeskoi derzhavnoi akademii budivnytstva ta arkhitektury, 44, 278–282.
  13. Ivanov, V. N. (1990). Slovar-spravochnik po liteinomu proizvodstvu. Moscow: Mashinostroenie, 384.
  14. Tonkonohyi, V. M., Prokopovich, I. V., Dukhanina, M. O., Dobrovolska, V. V. (2017). Metody vymiriuvannia efektyvnykh znachen parametriv perenosu v mashynobudivnykh detaliakh iz heterohennykh materialiv. Modern technologies in mechanical engineering, 12, 126–134.
  15. In: Hazewinkel, M. (2000). Encyclopaedia of Mathematics. Netherlands: Springer, 631. doi:10.1007/978-94-015-1279-4
  16. Oborsky, G. O., Slobodianyk, P. T., Kostenko, V. L., Antoshchuk, S. H. (2012). Vymiriuvannia fizychnykh velychyn. Odesa: Astroprynt, 400.
  17. Oborsky, G., Stanovskyi, A., Prokopovich, I., Dukhanina, M. (2014). Selection of metrological support of management of complex foundry objects with hardly measurable parameters. Eastern-European Journal of Enterprise Technologies, 6(3 (72)), 41–47. doi:10.15587/1729-4061.2014.32420
  18. Brooks, B. E., Beckermann, C., Richards, V. L. (2007). Prediction of burn-on and mould penetration in steel casting using simulation. International Journal of Cast Metals Research, 20 (4), 177–190. doi:10.1179/136404607x256006
  19. Ramana Rao, T. V. (2007). Metal Casting: Principles and Practice. New Age International, 304.
  20. Trajkovic, G. (2008). Measurement: Accuracy and Precision, Reliability and Validity. Encyclopedia of Public Health. Netherlands: Springer, 888–892. doi:10.1007/978-1-4020-5614-7_2081

Published

2017-09-21

How to Cite

Stanovskyi, A., Dukhanina, M., & Dobrovolska, V. (2017). Information support for processes of quality functionals measurement in the CAD of casting of steel castings in sand molds. Technology Audit and Production Reserves, 5(1(37), 13–18. https://doi.org/10.15587/2312-8372.2017.112537

Issue

Section

Metallurgical Technology: Original Research