Influence of the inlet flow swirler construction on hydrodynamics and efficiency of work

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.112786

Keywords:

, swirler construction, dust agglomeration, angular velocity of gas flow rotation

Abstract

The object of research is construction of a vortex dust collector. To solve the problem of increasing the efficiency of dust cleaning in a vortex apparatus with revealing the features of the mechanism and the destructive forces of the process, the features of the hydrodynamic regime of rotation of the gas-dust flow in the zone of the swirler and immediately after it are used.

The influence of the swirler construction and the location of its installation in the gas duct for feeding the gas-dust flow on the efficiency of the vortex apparatus is studied. It is shown that the aerodynamic processes that determine the nature of the flow rotation and its flow in the flue after the swirler reach the maximum possible angular velocity of the gas flow rotation in the separation chamber for this construction. It is proved that the swirler construction under the appropriate conditions allows a swirling flow leaving the duct to the separation chamber to reach the maximum possible angular velocity of the gas flow rotation for the given construction. The characteristic regimes of the gas-dust flow in the duct are established immediately after the swirler from its construction. It is shown that for a traditional vane swirler with a swirling flow in one direction, the most effective blade inclination angle corresponds to 45°. Its installation must be carried out in the duct from the end outlet to the separation chamber below by 1.4¸1.6 of the swirler diameter. Before the gas-dust flow flows into the separator, the flow is agglomerated with dust particles. At the exit of the gas-dust flow from the end of the flue to the separation space, the maximum value of the angular velocity of the flow in the separator is ensured. It is established that the blade vortex, which provides for the organization of coaxial turbulent flows in the flue, twisted in opposite directions, will allow more efficient agglomeration of dust particles. A basic construction of the vortex dust collector is developed, which makes it possible to increase the cleaning efficiency with a vortex device to 98–99 %.

Author Biographies

Inna Pitak, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Chemical Technique and Industrial Ecology

Serhii Briankin, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002

Head of Course of the Faculty of Military Training

Oleg Pitak, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Labour Protection and the Environmental 

Valery Shaporev, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002 Contact tel. 057-707-66-81

Doctor of Technical Sciences, Professor

Department of Chemical Technique and Industrial Ecology

Serhii Petrukhin, National Technical University «Kharkiv Polytechnic Institute», 2, Kirpicheva str., Kharkiv, Ukraine, 61002

PhD, Associate Professor

Department of Radiation, Chemical, Biological Protection

References

  1. Halich, R. V., Yakuba, R. V., Sklabinskii, V. I., Storozhenko, V. Ya. (2013). Konstruktivnoe usovershenstvovanie vihrevyh apparatov so vtorichnymi zakruchenniami potokami. Khimichna promyslovist Ukrainy, 3, 75–83.
  2. Akhesmeh, S., Pourmahmou, N., Sedgi, H. (2008). Numerical Study of the Temperature Separation in the Ranque-Hilsch Vortex Tube. American Journal of Engineering and Applied Sciences, 1 (3), 181–187. doi:10.3844/ajeassp.2008.181.187
  3. Halich, R. V. (2014). Vplyv vykhidnykh prystroiv na hidrodynamiku i efektyvnist vykhrovykh pylovlovliuvachiv. Sumy, 27.
  4. Pourmahmound, N., Akhesmeh, S. (2008). Numerical investigation of the termal separation in a vortex tube. Proceedings of world academy of science, engineering and technology, 33, 409−415.
  5. Pavlychenko, A. V., Kolesnyk, V. Ye. (2016). Rozrobka sposobiv znyzhennia rivnia ekolohichnoi nebezpeky vid pylovykh vykydiv v vuhilnykh shakhtakh. Geo-Technical Mechanics, 127, 141–150.
  6. Nezhad, H., Shamsoddini, R. (2009). Numerical three-dimensional analysis of the mechanism of flow and heat transfer in a vortex tube. Thermal Science, 13 (4), 183–196. doi:10.2298/tsci0904183n
  7. Kolesnyk, V. Ye., Dolhova, T. I., Kulikova, D. V., Pavlychenko, A. V. (2016). Sposoby i zasoby pidvyshchennia ekolohichnoi bezpeky skydu shakhtnykh vod v poverkhnevi vodoimy. Dnipro: Litohraf, 132.
  8. Halich, R. V., Yakuba, A. R., Sklabinskii, V. I., Storozhenko, V. Ya. (2014). Razrabotka i vnedrenie vihrevyh pyleulovitelei so vstrechnymi zakruchennymi potokami. Himicheskoe i neftegazovoe mashinostroenie, 3, 12–15.
  9. Kolesnyk, V. E., Yurchenko, A. A., Lytvynenko, A. A., Pavlychenko, A. V. (2014). Sposoby i zasoby pidvyshchennia ekolohichnoi bezpeky masovykh vybukhiv v zalizorudnykh karierakh za pylovym chynnykom. Dnipropetrovsk: Litohraf, 112.
  10. Zuikov, A. L., Orehov, G. V., Volshanik, V. V. (2013). Raspredelenie azimutal'nyh skorostei v laminarnom kontrvihrevom techenii. Vestnik MGSU, 5, 150–161.
  11. Kalashnik, M. V. (2008). Tsiklotroficheskoe prisposoblenie v zakruchennyh gazovyh potokah i vihrevoi effekt Ranka. ZhETF, 133 (4), 935–947.

Published

2017-09-21

How to Cite

Pitak, I., Briankin, S., Pitak, O., Shaporev, V., & Petrukhin, S. (2017). Influence of the inlet flow swirler construction on hydrodynamics and efficiency of work. Technology Audit and Production Reserves, 5(3(37), 14–22. https://doi.org/10.15587/2312-8372.2017.112786

Issue

Section

Ecology and Environmental Technology: Original Research