Substantiation of the structure theory of design of technological machines and devices

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.113003

Keywords:

structure theory of design, criteria of compilation and maintainability, existence theorem for designs

Abstract

The object of research is the theory of the design of technological machines and devices. The main idea of this theory is the possibility of a priori quantitative evaluation of the design of machine and instrument constructions for manufacturability, unification and other indicators based on the identification of structural design features and the creation of quantitative criteria.

An in-depth study of this work has shown that the weaknesses of the research are related to the rather high influence of the heuristic component on the process of scientific and engineering search. One of the most problematic places is that the complete formalization of this process can lead to a halt in the development of scientific and technical thought. There is a risk of reducing the construction process to the reproduction of an infinite number of similar structures that differ in certain characteristics, but lie within the same constructive series.

To prevent the negative impact of the proposed theory on the rate of technical progress, it is necessary to strictly limit the field of its use, using it to optimize the design of entire products or their individual components and automate the process of searching for a better prototype for improvement in a combination of features.

To prove the main idea of the theory, methods of analysis and induction are used in the course of the research, on the basis of which, using the lemma and existence theorems, basic axiomatic theories are formulated with the subsequent completion of theorems, although the content of the considered theory is not mathematical, but technical objects.

The structure theory of design is unique, since being a model of logical computation, it makes it possible to reveal regularities in classes and series of a set of designs on the basis of which to propose ways of optimizing and improving the productivity of the design process by establishing a connection between the features of the designs and their coding according to the chain of successive transformations. Coding of structures in place in the chain of transformations opens up wide prospects for automation of the design process.

Author Biographies

Leonid Los, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Professor

Department of Mechanics and Agroecosystems Engineering

Saveliy Kukharets, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Doctor of Technical Sciences, Associate Professor, Head of the Department

Department of Mechanics and Agroecosystems Engineering

Nataliya Tsyvenkova, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

PhD, Associate Professor

Department of Mechanics and Agroecosystems Engineering

Anna Нolubenko, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Assistant

Department of Electrification, Automation of Production and Engineering Ecology

Marina Tereshchuk, Zhytomyr National Agroecological University, 7, Stary Boulevard, Zhytomyr, Ukraine, 10008

Postgraduate Student

Department of Mechanics and Agroecosystems Engineering

References

  1. DSTU ISO 9001-95. Systemy yakosti. Model zabezpechennia yakosti v protsesi proektuvannia, rozroblennia, montazhu ta obsluhovuvannia. (1996). Introduced from July 01, 1996. Kyiv: Derzhspozhyvstandart Ukrainy, 30.
  2. DSTU 3974-2000. Systemy rozroblennia ta postavlennia produktsii na vyrobnytstvo. Pravyla vykonannia doslidno-konstruktorskykh robit. (2000). Introduced from November 27, 2000. Kyiv: Derzhspozhyvstandart Ukrainy, 38.
  3. Aleksandrov, P. S. (1977). Vvedenie v teoriiu mnozhestv i obshchuiu topologiiu. Moscow: Nauka, 368.
  4. Kolmogorov, A. N., Fomin, S. V. (1976). Elementy teorii funktsii i funktsional'nogo analiza. Moscow: Nauka, 544.
  5. Lavrov, I., Maksimova, L.; In: Corsi, G. (2003). Problems in Set Theory, Mathematical Logic and the Theory of Algorithms. Springer US, 282. doi:10.1007/978-1-4615-0185-5
  6. Sigorskii, V. P. (1975). Matematicheskii apparat inzhenera. Kyiv: Tehnika, 768.
  7. Andreeev, I. D. (1979). Teoriia kak forma organizatsii nauchnogo znaniia. Moscow: Nauka, 303.
  8. Cattaneo, M. E. G. V. (2017). The likelihood interpretation as the foundation of fuzzy set theory. International Journal of Approximate Reasoning, 90, 333–340. doi:10.1016/j.ijar.2017.08.006
  9. Leigh, J. R. (2004). Neural networks, fuzzy logic, genetic algorithms, learning systems intelligent systems. Control Theory. IET, 225–248. doi:10.1049/pbce064e_ch17
  10. Maciejewski, A. J., Przybylska, M., Tsiganov, A. V. (2011). On algebraic construction of certain integrable and super-integrable systems. Physica D: Nonlinear Phenomena, 240 (18), 1426–1448. doi:10.1016/j.physd.2011.05.020
  11. Kuru, S., Negro, J., Ragnisco, O. (2017). The Perlick system type I: From the algebra of symmetries to the geometry of the trajectories. Physics Letters A, 381 (39), 3355–3363. doi:10.1016/j.physleta.2017.08.042
  12. Stratulat, S. (2017). Mechanically certifying formula-based Noetherian induction reasoning. Journal of Symbolic Computation, 80, 209–249. doi:10.1016/j.jsc.2016.07.014
  13. Kaufman, A., Itskovich, G. (2017). Geometrical Factor Theory of Induction Logging. Basic Principles of Induction Logging. Elsevier, 173–226. doi:10.1016/b978-0-12-802583-3.00006-x
  14. Silver, J. H. (1971). Some applications of model theory in set theory. Annals of Mathematical Logic, 3 (1), 45–110. doi:10.1016/0003-4843(71)90010-6
  15. Hilbert, D., Bernays, P. (1968). Grundlagen der Mathematik I (Grundlehren der mathematischen Wissenschaften) (German Edition). Ed. 2. Springer, 480.
  16. Engstrom, F., Kontinen, J., Vaananen, J. (2013). Dependence Logic with Generalized Quantifiers: Axiomatizations. Lecture Notes in Computer Science, 138–152. doi:10.1007/978-3-642-39992-3_14
  17. Perez-Gallego, P., Quevedo, J. R., del Coz, J. J. (2017). Using ensembles for problems with characterizable changes in data distribution: A case study on quantification. Information Fusion, 34, 87–100. doi:10.1016/j.inffus.2016.07.001
  18. Kuznetsov, O. P., Adelson-Velskii, G. M. (1980). Diskretnaia matematika dlia inzhenera. Moscow: Energiia, 344.
  19. In: Vinogradov, I. M. (1979). Matematicheskaia entsiklopediia. Vol. 2. Moscow: Sovetskaia Entsiklopediia, 1104.
  20. Fichera, G. (1973). Existence Theorems in Elasticity. Linear Theories of Elasticity and Thermoelasticity. Berlin, Heidelberg: Springer, 347–389. doi:10.1007/978-3-662-39776-3_3
  21. Freiman, L. S. (1971). Teoremy sushchestvovaniia. Moscow: Nauka, 135.
  22. Chapra, S., Canale, R. (2014). Numerical Methods for Engineers. Ed. 7. New York: McGraw-Hill Education, 992.
  23. Elektricheskii mnogopridel'nyi pribor. (1960). Patent of Austria 212427.
  24. Grinberg, I. P., Los, L. V. (1979). Fiksator perekliuchatelia mnogopredel'nogo elektroizmeritel'nogo pribora. A. s. 646259 (USSR). Bull. No. 5.
  25. Demchenko, A. M., Grinberg, I. P., Los, L. V. (1981). Fiksator perekliuchatelia. A. s. 879578 (USSR). Bull. No. 41.
  26. Demchenko, A. M., Grinberg, I. P., Los, L. V. (1984). Fiksator perekliuchatelia. A. s. 1126941 (USSR). Bull. No. 44.
  27. Grinberg, I. P., Los, L. V., Galitskii, R. M., Bezusyi, M. I. (1983). Kommutatsionnoe ustroistvo mnogopredel'nogo elektroizmeritel'nogo pribora. A. s. 987533 (USSR). Bull. No. 1.
  28. Goncharov, E. S., Prilutskii, A. N., Voloshin, N. I. (1975). Vibrotsentrobezhnaia zernoochistitel'naia mashina. A. s. 485784 (USSR). Bull. No. 36.
  29. Goncharov, E. S. (1978). Zernoochistitel'naia mashina. A. s. 976539 (USSR).
  30. Liu, Y., Zhao, T., Ju, W., Shi, S. (2017). Materials discovery and design using machine learning. Journal of Materiomics, 3 (3), 159–177. doi:10.1016/j.jmat.2017.08.002

Published

2017-09-21

How to Cite

Los, L., Kukharets, S., Tsyvenkova, N., Нolubenko A., & Tereshchuk, M. (2017). Substantiation of the structure theory of design of technological machines and devices. Technology Audit and Production Reserves, 5(1(37), 48–55. https://doi.org/10.15587/2312-8372.2017.113003

Issue

Section

Mechanics: Original Research