Analysis of efficiency of deck diverce masking from distribution-diversion glaiders by a formable embody buffer zone

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.118934

Keywords:

angle of aberration, ultrasonic radiation, resonance of wave coincidence, caustic zones, enclosing surface

Abstract

The object of research is the process of elastic interaction of an ultrasonic beam with a cylindrical module enclosing the airplane in the form of two circular shells of the same length coaxially connected by their ends, the hermetical gap between them filled with liquid.

One of the problematic areas of the study is that the dislocation of deck aviation in the open waist plane allows the means of detecting the suborbital and atmospheric reconnaissance of the enemy to determine undefined not only the initial coordinates but also its coordinate functions for the entire period of subsequent trajectory travel. Finally, the on-board glider equipment, taking this information as the original one, makes it possible, with anticipation, accurately, to fire at the theoretical trajectory of motion, thereby increasing the probability of hitting the target. Therefore, it is necessary to ensure 100 % masking of deck aviation at open launch positions. This will significantly reduce or completely eliminate and improve the efficiency and life-span of the aircraft as a whole.

It is shown that, when the case is subjected to symmetrical oscillations, which greatly exceed the resistance to antisymmetric vibrations, the sound permeability of the case elements will increase solely by bending vibrations. It is revealed that the «acoustic transparency» of the device case serves as an intensive transfer of the sound energy of the bending waves of the case and completely depends on the frequency of the acoustic radiation, as well as the incidence angles. Thus, by creating a circular or ellipsoidal enclosing cylindrical module in the form of two circular shells filled with liquid, it will be possible to quickly disassemble and place it over another object in a matter of hours.

Author Biographies

Volodimir Karachun, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremogy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of Biotechnics and Engineering

Viktorij Mel’nick, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremogy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of Department

Department of Biotechnics and Engineering

Sergii Fesenko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremogy ave., Kyiv, Ukraine, 03056

Postgraduate Student

Department of Biotechnics and Engineering

References

  1. Giperzvukovaia voina pugaet neopredelennost'iu. (2015, February 24). Zoom.CNews. Available at: http://zoom.cnews.ru/rnd/article/item/giperzvukovaya_vojna_pugaet_neopredelennostyu/print/
  2. Obshchie polozheniia o maskirovke samoletov. (2017). Voennaia entsiklopediia. Armii i soldaty. Available at: http://armedman.ru/stati/obshhie-polozheniya-o-maskirovke-samoletov.html/
  3. Maskirovka ot radiolokatsionnyh sredstv razvedki. (2017). Bukvi.ru Nauchno-populiarnyi portal. Available at: http://bukvi.ru/bgd/osnovy-maskirovki-ot-razvedki-protivnika.html/
  4. Gordeev, N. P. (1971). Maskirovka v boevyh deistviiah flota. Moscow, 160.
  5. Zerkal'nyi samolet inzhenera I. I. Varshavskogo. Ugol otrazheniia. (2011). Al'ternativnaia istoriia. Available at: http://alternathistory.com/zerkalnyi-samolet-inzhenera-ii-varshavskogo-ugol-otrazheniya/
  6. Koroliov, A. Yu., Koroliova, A. A., Yakovlev, A. D. (2015). Maskirovka vooruzheniia, tehniki i obiektov. St. Petersburg: Universitet ITMO, 155.
  7. Tehnologiia Stels. Korotko i iasno. (2014). Avia.Pro. Available at: http://avia.pro/blog/tehnologiya-stels-korotko-i-yasno/
  8. Zavodskov, A. S., Korotchenko, R. A. (2016). Krylatye teni. Metody zashchity samoleta ot radiolokatsionnogo obnaruzheniia. Yunyi uchenyi, 3, 132–136. Available at: http://yun.moluch.ru/archive/6/474/
  9. Dance, S. M., Roberts, J. P., Shield, B. M. (1995). Computer prediction of sound distribution in enclosed spaces using an interference pressure model. Applied Acoustics, 44 (1), 53–65. doi:10.1016/0003-682x(94)p4419-7
  10. Zhou, J., Bhaskar, A., Zhang, X. (2015). Sound transmission through double cylindrical shells lined with porous material under turbulent boundary layer excitation. Journal of Sound and Vibration, 357, 253–268. doi:10.1016/j.jsv.2015.07.014
  11. Morvaridi, M., Brun, M. (2016). Perfectly matched layers for flexural waves: An exact analytical model. International Journal of Solids and Structures, 102–103, 1–9. doi:10.1016/j.ijsolstr.2016.10.024
  12. Ren, C., Xiang, Z. (2014). Camouflage devices with simplified material parameters based on conformal transformation acoustics. Applied Mathematical Modelling, 38 (15–16), 3774–3780. doi:10.1016/j.apm.2013.12.005
  13. Wang, S.-Y., Liu, S.-B., Guo, Y.-N., Ghen, C. (2013). A v-shaped cavity camouflage coating. Optics & Laser Technology, 45, 666–670. doi:10.1016/j.optlastec.2012.05.014
  14. Xu, Y., Basset, G. (2010). Virtual motion camouflage based phantom track generation through cooperative electronic combat air vehicles. Automatica, 46 (9), 1454–1461. doi:10.1016/j.automatica.2010.05.027
  15. Yu, X., Lin, G., Zhang, D., He, H. (2006). An optimizing method for design of microwave absorbing materials. Materials & Design, 27 (8), 700–705. doi:10.1016/j.matdes.2004.12.022
  16. Zaborov, V. I. (1969). Teoriia zvukoizoliatsii ograzhdaiushchih konstruktsii. Moscow: Izdatel'stvo literatury po stroitel'stvu, 187.
  17. Shenderov, E. L. (1972). Volnovye zadachi gidroakustiki. Leningrad: Sudostroenie, 352.
  18. Karachun, V. V., Mel’nick, V. M. (2011). Zadachi suprovodu ta maskuvannia rukhomykh obiektiv. Kyiv: Korniichuk, 264.
  19. Mel’nick, V., Ladogubets, N. (2016). Volnovye zadachi v akusticheskih sredah. Kyiv: Korneichuk, 432.
  20. Mel’nick, V., Karachun, V. (2016). The emergence of resonance within acoustic fields of the float gyroscope suspension. Eastern-European Journal of Enterprise Technologies, 1 (7 (79)), 39–44. doi:10.15587/1729-4061.2016.59892

Published

2017-11-30

How to Cite

Karachun, V., Mel’nick, V., & Fesenko, S. (2017). Analysis of efficiency of deck diverce masking from distribution-diversion glaiders by a formable embody buffer zone. Technology Audit and Production Reserves, 6(1(38), 10–15. https://doi.org/10.15587/2312-8372.2017.118934

Issue

Section

Mechanics: Original Research