Design of conception on lightning monitoring system for strikes to structures

Authors

DOI:

https://doi.org/10.15587/2312-8372.2017.119319

Keywords:

lightning video registration, lightning monitoring, lightning monitoring system, thunderstorm warning system

Abstract

The object of research is the monitoring system (MS) for lightning, which strikes specific objects or happening nearby. It is based on the use of regular (not high-speed) video cameras. Among drawbacks of some existing MS having video capturing of strike position, one can indicate that in automatic setting modes they are able to record comparatively reliably only discharges including continuous current component. Also, the triggering to start saving of video fragment with lightning into memory and transmission to server is provided usually by optical sensor only. Other sensors are used rarely or their characteristics are not well substantiated. High-speed cameras are also utilized sometime, but this is expensive and usually related to research projects. Two variants of MS conception were worked out during the study – complex and simplified. It is suggested to use additional sensors (electric and magnetic field, acoustic) for reliable triggering of MS and also several video cameras. In both variants of MS, for extraction of only frames containing captured lightning strikes from the whole recorded video row, it is suggested to use software based on computer vision library (Open CV).  

Characteristics of all sensors are substantiated and recommended, in particular:

– video cameras – IP-type, 25…50 fps, 1080р or better;

– optical sensor – sensitivity range 0.4…1 μm, time resolution – 1 μs, distance – up to 500 m;

– «slow» electric field antenna – electronic type, 0.1…10 Hz;

– «fast» electric field antenna – rode or plate type, 1 kHz…5(20) MHz;

– magnetic field registration – compact ferrite antenna, 3…30(100) kHz;

– thunder recording – capacitor microphones at 0 to 1…2 kHz.

Experimental laboratory tests are carried out regarding designed optical sensor performance by using impulse current, which have parameters corresponding to actual lightning. 

Author Biographies

Volodymyr Shostak, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of High Voltage Engineering and Electrophysics

Roman Prylepa, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Department of High Voltage Engineering and Electrophysics

Oleksandr Kozlov, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Department of High Voltage Engineering and Electrophysics

Volodymyr Brzhezitsky, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor

Department of High Voltage Engineering and Electrophysics

References

  1. Cummins, K. L., Murphy, M. J. (2009). An Overview of Lightning Locating Systems: History, Techniques, and Data Uses, With an In-Depth Look at the U.S. NLDN. IEEE Transactions on Electromagnetic Compatibility, 51 (3), 499–518. doi:10.1109/temc.2009.2023450
  2. Richard, P., Soulage, A., Broutet, F., Iojou, J. Y., Bettencourt, P. (1990). SAFIR: Operational System For Long Range Monymring Of thunderstorm Activity. 10th Annual International Symposium on Geoscience and Remote Sensing, 1889–1892. doi:10.1109/igarss.1990.688892
  3. Rakov, V. A., Uman, M. A. (2003). Lightning: physics and effects. Cambridge University Press, 687.
  4. Stock, M., Wu, T., Akiyama, Y., Ushio, T., Kawasaki, Z., Nakamura, Y., Stock, M., Kawasaki, Z. (2016). Improvements to the BOLT lightning location system. 2016 33rd International Conference on Lightning Protection (ICLP). Estoril, 1–4. doi:10.1109/iclp.2016.7791365
  5. VAISALA: Official Site. Available at: http://www.vaisala.com/. Last accessed: 10.11.2017.
  6. THOR GUARD: Official Site. Available at: http://www.thorguard.com/. Last accessed: 10.11.2017.
  7. Products. BOLTEK: Official Site. Available at: http://www.boltek.com/catalog/products/. Last accessed: 10.11.2017.
  8. Aplicaciones Tecnológicas: Official Site. Available at: http://lightningprotection-at3w.com/. Last accessed: 10.11.2017.
  9. Lightning & Surge Technologies: Official Site. Available at: http://www.lightningman.com.au/. Last accessed: 10.11.2017.
  10. Bloemink, H. (2013). Static electricity measurements for lightning warnings: an exploration. INFRA-R&D KNMI, 28.
  11. Matsui, M., Takano, N. (2010). Evaluation of Lightning Location accuracy of JLDN with a lightning video camera system. 2010 Asia-Pacific International Symposium on Electromagnetic Compatibility. Beijing, China, 1142–1145. doi:10.1109/apemc.2010.5475826
  12. Huang, B., Fu, Z., Chen, J., Gu, C. (2014). Remote online observation system of power system lightning stroke. 2014 International Conference on Lightning Protection (ICLP). Shanghai, 922–926. doi:10.1109/iclp.2014.6973255
  13. Shanqiang, G., Biwu, Y., Chun, Z., Tao, W., Qing, L. (2016). Application of lightning optical path monitoring system on 500 kV transmission lines in mountain area. 2016 33rd International Conference on Lightning Protection (ICLP). Estoril, 1–5. doi:10.1109/iclp.2016.7791413
  14. Yan, N., Shi, Z., Xu, N., Wang, B., Fu, Z. (2014). Lightning stroke optical triggering circuit design for overhead line. 2014 International Conference on Lightning Protection (ICLP). Shanghai, 205–209. doi:10.1109/iclp.2014.6973122
  15. Xiang, N., Gu, S. (2011). A Precisely Synchronized Platform for Observing the Lightning Discharge Processes. 2011 Asia-Pacific Power and Energy Engineering Conference. Wuhan, 1–3. doi:10.1109/appeec.2011.5748369
  16. Pomar Garcia, C., Puchades Marco, J.; assignee: Aplicaciones Tecnologicas, S.A. (2009, March 24). Device and system for the measurement of an external electrostatic field, and system and method for the detection of storms. Patent US 7508187 B2. Appl. No. US 11/666,193; Filed October 25, 2005. Available at: https://www.google.com/patents/US7508187
  17. In: Cooray, V. (2014). The Lightning Flash. Ed. 2. The Institution of Engineering and Technology, 926. doi:10.1049/pbpo069e
  18. Rakov, V. A. (2016). Fundamentals of Lightning. Cambridge University Press, 248. doi:10.1017/cbo9781139680370
  19. Rakov, V. A. (2011). Lightning parameters for engineering applications – An update on CIGRE WG C4.407 activities. 2011 International Symposium on Lightning Protection. IEEE. doi:10.1109/sipda.2011.6088434
  20. Open Source Computer Vision Library. Available at: http://opencv.org. Last accessed: 10.11.2017.
  21. Raspberry Pi Camera Module No. 913-2664. Available at: https://cdn.sparkfun.com/datasheets/Dev/RaspberryPi/RPiCamMod2.pdf. Last accessed: 10.11.2017.
  22. Mosaddeghi, S. A. (2011). Electromagnetic Environment Associated with Lightning Strikes to Tall Strike Objects. Lausanne, Switzerland, 152.
  23. Lin, Y. T., Uman, M. A., Tiller, J. A., Brantley, R. D., Beasley, W. H., Krider, E. P., Weidman, C. D. (1979). Characterization of lightning return stroke electric and magnetic fields from simultaneous two-station measurements. Journal of Geophysical Research, 84 (C10), 6307–6314. doi:10.1029/jc084ic10p06307
  24. Kravchenko, V. I. (1991). Grozozashchita radioelektronnyh sredstv. Moscow: Radio i sviaz', 264.
  25. MOD-1016 HWv8. (September 8, 2015). Embedded Adventures. Available at: https://www.embeddedadventures.com/datasheets/MOD-1016_hw_v8_doc_v4.pdf. Last accessed: 10.11.2017.
  26. Wiacek, M., Uchida, Y., Chang, J. S., Janischewskyj, W., Hussein, A. M., Shostak, V., Sakuta, T. (2002). Advanced Optical Image Processing Analysis of Tall Structure Lightning Events by Digital High Frame Rate Optical Images System and Spectroscopy. Proceedings XIV International Conference on Gas Discharges and their Applications. Vol. 2. Liverpool, UK, 296–300.
  27. Quick, M. G., Krider, E. P. (2013). Optical power and energy radiated by natural lightning. Journal of Geophysical Research: Atmospheres, 118 (4), 1868–1879. doi:10.1002/jgrd.50182
  28. Quick, M. G., Krider, E. P. (2014). Optical emission and peak electromagnetic power radiated by return strokes in rocket-triggered lightning. 2014 International Conference on Lightning Protection (ICLP). Shanghai, 2011–2015. doi:10.1109/iclp.2014.6973459
  29. Holmes, C. R., Brook, M., Krehbiel, P., McCrory, R. (1971). On the power spectrum and mechanism of thunder. Journal of Geophysical Research, 76 (9), 2106–2115. doi:10.1029/jc076i009p02106

Published

2017-11-30

How to Cite

Shostak, V., Prylepa, R., Kozlov, O., & Brzhezitsky, V. (2017). Design of conception on lightning monitoring system for strikes to structures. Technology Audit and Production Reserves, 6(1(38), 47–59. https://doi.org/10.15587/2312-8372.2017.119319

Issue

Section

Electrical Engineering and Industrial Electronics: Original Research