DOI: https://doi.org/10.15587/2312-8372.2018.123502

Compensation of the spatial deviations of measuring elements in CAD

Olexandr Stanovskyi, Alla Toropenko, Elena Lebedeva, Viktoriya Dobrovolska, Olesya Daderko

Abstract


The object of research is the processes of computer-aided design of the elements of complex measuring instruments intended to work under conditions of significant deviations in space caused by mechanical or thermal stresses. One of the most problematic places is that any protection state completely eliminates unwanted deviations of the elements. This is especially true for measurement objects that have large dimensions (tens of meters) and weight, opacity, high temperatures (hundreds of degrees), significant external influences of unpredictable nature, and the like. Models of behavior of such objects under load are extremely complex, and methods of their analysis and use in CAD are not available at all, which leads to the laying of significant errors of the future measurement already at the design stage.

In the course of the study, the theory of analysis of technical systems, the theory of measurements, the theory of the resistance of materials and oscillations, the theory of computer-aided design were used. To develop a capacitive method for measuring the density of parts of large-sized reinforced concrete objects from heterogeneous materials, methods of pattern recognition and a virtual object are used.

Theoretical and experimental virtual models of electrical characteristics of the elements of measuring instruments and models of their deviation are obtained. Models are used in automated design systems for complex means of capacitive measurement of concrete. The first is mathematical, in which compensation is performed solely by making changes to the measurement results. The second is mechanical, in which compensation is made by changing the geometry of the measuring tool (with static deviation) or depreciation of their elements (with dynamic).

Thanks to this, it is possible to create a new subsystem of CAD «DEVICOM», with the help of which shock absorbers were designed to control the technological process of manufacturing the reinforced concrete product «Power transmission line support», which, as a result, reduced the amount of defective products by 7.4 %.


Keywords


elements of metrological instruments; spatial deviation; computer-aided design; error and reliability of measurements

Full Text:

PDF

References


Baranov V. V. Tekhnologicheskiy audit predpriyatiya v semi shagakh. Elitarium. TSentr dopolnitel'nogo obrazovaniya. Available at: http://www.elitarium.ru/tekhnologicheskijj_audit_predprijatija/. Last accessed: 03.05.2016.

Osnovni pytannia proektuvannia ta povirky tsyfrovykh vymiriuvalnykh pryladiv. Available at: http://elib.lutsk-ntu.com.ua/book/fepes/pruladobyd/2015/15-07/other/lekcziya_30__osnovni_pitannya_proektuvannya_ta_povirki_czifrovix_vimiryuval_nix_priladiv.pdf. Last accessed: 11.01.2018.

Oborskyi, G. A., Stanovskyi, A. L., Prokopovich, I. V., Duhanina, M. A. (2014). Selection of metrological support of management of complex foundry objects with hardly measurable parameters. Eastern-European Journal of Enterprise Technologies, 6 (3 (72)), 41–47. doi:10.15587/1729-4061.2014.32420

Brignell, J. E., Young, R. (1979). Computer-aided measurement. Journal of Physics E: Scientific Instruments, 12 (6), 455–463. doi:10.1088/0022-3735/12/6/002

Kuts, Yu. V., Lysenko, Yu. Yu., Protasov, A. H. (2017). Pryntsypy proektuvannia zasobiv elektromahnitnoho neruinivnoho kontroliu. Suchasni prylady, materialy i tekhnolohii dlia neruinivnoho kontroliu i tekhnichnoi diahnostyky mashynobudivnoho i naftohazopromyslovoho obladnannia. Ivano-Frankivsk, 44–45.

Shherbinskiy, V. G., Pafos, S. K., Gurvich, A. K. (2002). Ul'trazvukovaya defektoskopiya: vchera, segodnya, zavtra. V mire nerazrushayushhego kontrolya, 4, 18.

Stanovskaia, T. P., Dukhanyna, M. A., Shykhyreva, Yu. V. (2013). Infrakrasnyi metod izmerenyia teplovykh parametrov zatverdevanyia betona. Kholodylna tekhnika i tekhnolohiia, 2 (142), 112–115.

Angrisani, L., Bechou, L., Dallet, D., Daponte, P., Ousten, Y. (2002). Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet transform. Measurement, 31 (2), 77–91. doi:10.1016/s0263-2241(01)00032-x

Matlack, K. H., Kim, J.-Y., Jacobs, L. J., Qu, J. (2014). Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals. Journal of Nondestructive Evaluation, 34 (1), 273. doi:10.1007/s10921-014-0273-5

Ho, C., Robinson, A., Miller, D., Davis, M. (2005). Overview of Sensors and Needs for Environmental Monitoring. Sensors, 5 (12), 4–37. doi:10.3390/s5010004

Yakovlev, M. Yu., Volobuiev, A. P. (2007). Otsinka metrolohichnoi nadiinosti zasobiv vymiriuvalnoi tekhniky aviatsiinykh radiotekhnichnykh system na etapi proektuvannia. Systemy ozbroiennia i viiskova tekhnika, 2, 53–55.

Mishhenko, S. V., Tsvetkov, E. I., Chernyshova, T. I. (2001). Metrologicheskaya nadezhnost' izmeritel'nykh sredstv. Moscow: Mashinostroenie, 96.

Chinkov, V. N., Mel'nichenko, A. E. (2004). Izbytochnaya model' nadezhnoy ekspluatatsii sredstv izmeritel'noy tekhniki. Ukrainskiy metrologicheskiy zhurnal, 2, 57–60.

Prokopovych, Y. V., Dukhanyna, M. A., Monova, D. A. (2013). Upravlenie svoistvamy strukturochuvstvytelnykh obiektov lyteinoho proyzvodstva. Pratsi Odeskoho politekhnichnoho universytetu, 2 (41), 13–18.

Mekhanichni metody neruinivnoho kontroliu mitsnosti betonu. BudMaister. Available at: http://budmayster.pp.ua/1511-mehanchn-metodi-neruynvnogo-kontrolyu-mcnost-betonu.html. Last accessed: 11.11.2017.

Yakovlev, M. Y., Volobuyev, A. P. (2006). Evaluation of the Metrological Reliability of the Means of Measuring Techniques of the Aircraft Radio Systems. Modern Problems of Radio Engineering, Telecommunications and Computer Science. Lviv-Slavske, 591–592. doi:10.1109/tcset.2006.4404644

Stanovskyi, O. L., Shvets, P. S., Toropenko, A. V., Bondarenko, V. V., Stanovskyi, A. O., Shena, O. A. et al. (2015). Optymizatsiia zviaznosti elementiv v zadachakh avtomatyzovanoho proektuvannia system. Visnyk naukovykh prats NTU «KhPI», 49 (11/58), 170–175.

Porter, B. E. (2011). Handbook of Traffic Psychology. Norfolk: Old Dominion University, 536. doi:10.1016/c2009-0-01975-8

Rao, P. (2008). Manufacturing Technology: Foundry, Forming and Welding. New Delhi: Tata McGraw Hill, 485.

Prokopovych, I. V., Dukhanina, M. O., Stanovska, I. I., Valid, Sh. Kh., Dobrovolska, V. V., Toropenko, O. V. (2016). Metrolohichne zabezpechennia kontroliu shchilnosti heterohennykh materialiv. Visnyk NTU «KhPI»: Mekhaniko-tekhnolohichni systemy ta kompleksy, 50 (1222), 22–28.

Measurement Error (Observational Error). (2016). Statistics How To. Available at: http://www.statisticshowto.com/measurement-error/ Last accessed: 21.12.2017.

Stanovskaya, T. P., Tonkonogiy, V. M., Oparin, A. V. (2005). Avtomatizirovannoe proektirovanie mekhanizmov s vnutrenney vibrozashhitoy. Kholodil'naya tekhnika i tekhnologiya, 2, 107–109.

Szhul'gin, K. (2002). Osnovnye parametry diskovykh EMF na chastotu 500 kGts. Radio, 5, 59–61.

Carr, J. J. (2002). Radio Society of Great Britain. RF components and circuits. Oxford: Newnes, 34–65. doi:10.1016/b978-075064844-8/50004-9


GOST Style Citations


Baranov V. V. Tekhnologicheskiy audit predpriyatiya v semi shagakh // Elitarium. TSentr dopolnitel'nogo obrazovaniya. URL: http://www.elitarium.ru/tekhnologicheskijj_audit_predprijatija/(Last accessed: 03.05.2016).

Osnovni pytannia proektuvannia ta povirky tsyfrovykh vymiriuvalnykh pryladiv. URL: http://elib.lutsk-ntu.com.ua/book/fepes/pruladobyd/2015/15-07/other/lekcziya_30__osnovni_pitannya_proektuvannya_ta_povirki_czifrovix_vimiryuval_nix_priladiv.pdf (Last accessed: 11.01.2018).

Selection of metrological support of management of complex foundry objects with hardly measurable parameters / Oborskiy G. A. et al. // Eastern-European Journal of Enterprise Technologies. 2014. Vol. 6, No. 3 (72). P. 41–47. doi:10.15587/1729-4061.2014.32420 

Brignell J. E., Young R. Computer-aided measurement // Journal of Physics E: Scientific Instruments. 1979. Vol. 12, No. 6. P. 455–463. doi:10.1088/0022-3735/12/6/002 

Kuts Yu. V., Lysenko Yu. Yu., Protasov A. H. Pryntsypy proektuvannia zasobiv elektromahnitnoho neruinivnoho kontroliu: proceedings // Suchasni prylady, materialy i tekhnolohii dlia neruinivnoho kontroliu i tekhnichnoi diahnostyky mashynobudivnoho i naftohazopromyslovoho obladnannia. Ivano-Frankivsk, 2017. P. 44–45.

Shherbinskiy V. G., Pafos S. K., Gurvich A. K. Ul'trazvukovaya defektoskopiya: vchera, segodnya, zavtra // V mire nerazrushayushhego kontrolya. 2002. Vol. 4. P. 18.

Stanovskaia T. P., Dukhanyna M. A., Shykhyreva Yu. V. Infrakrasnyi metod izmerenyia teplovykh parametrov zatverdevanyia betona // Kholodylna tekhnika i tekhnolohiia. 2013. Vol. 2 (142). P. 112–115.

Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet transform / Angrisani L. et al. // Measurement. 2002. Vol. 31, No. 2. P. 77–91. doi:10.1016/s0263-2241(01)00032-x 

Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals / Matlack K. H. et al. // Journal of Nondestructive Evaluation. 2014. Vol. 34, No. 1. P. 273. doi:10.1007/s10921-014-0273-5 

Overview of Sensors and Needs for Environmental Monitoring / Ho C. et al. // Sensors. 2005. Vol. 5, No. 12. P. 4–37. doi:10.3390/s5010004 

Yakovlev M. Yu., Volobuiev A. P. Otsinka metrolohichnoi nadiinosti zasobiv vymiriuvalnoi tekhniky aviatsiinykh radiotekhnichnykh system na etapi proektuvannia // Systemy ozbroiennia i viiskova tekhnika. 2007. Vol. 2. P. 53–55.

Mishhenko S. V., Tsvetkov E. I., Chernyshova T. I. Metrologicheskaya nadezhnost' izmeritel'nykh sredstv. Moscow: Mashinostroenie, 2001. 96 p.

Chinkov V. N., Mel'nichenko A. E. Izbytochnaya model' nadezhnoy ekspluatatsii sredstv izmeritel'noy tekhniki // Ukrainskiy metrologicheskiy zhurnal. 2004. Vol. 2. P. 57–60.

Prokopovych Y. V., Dukhanyna M. A., Monova D. A. Upravlenie svoistvamy strukturochuvstvytelnykh obiektov lyteinoho proyzvodstva // Pratsi Odeskoho politekhnichnoho universytetu. 2013. Vol. 2 (41). P. 13–18.

Mekhanichni metody neruinivnoho kontroliu mitsnosti betonu. BudMaister. URL: http://budmayster.pp.ua/1511-mehanchn-metodi-neruynvnogo-kontrolyu-mcnost-betonu.html(Last accessed: 11.11.2017).

Yakovlev M. Y., Volobuyev A. P. Evaluation of the Metrological Reliability of the Means of Measuring Techniques of the Aircraft Radio Systems: Proceedings // Modern Problems of Radio Engineering, Telecommunications and Computer Science. Lviv-Slavske, 2006. Р. 591–592. doi:10.1109/tcset.2006.4404644 

Optymizatsiia zviaznosti elementiv v zadachakh avtomatyzovanoho proektuvannia system / Stanovskyi O. L. et al. // Visnyk naukovykh prats NTU «KhPI». 2015. Vol. 49 (11/58). P. 170–175.

Porter B. E. Handbook of Traffic Psychology. Norfolk: Old Dominion University, 2011. 536 p. doi:10.1016/c2009-0-01975-8 

Rao, P. Manufacturing Technology: Foundry, Forming and Welding. New Delhi: Tata McGraw Hill, 2008. 485 p.

Metrolohichne zabezpechennia kontroliu shchilnosti heterohennykh materialiv / Prokopovych I. V. et al. // Visnyk NTU «KhPI»: Mekhaniko-tekhnolohichni systemy ta kompleksy. 2016. Vol. 50 (1222). P. 22–28.

Measurement Error (Observational Error). Statistics How To. 2016. URL: http://www.statisticshowto.com/measurement-error/ (Last accessed: 21.12.2017).

Stanovskaya T. P., Tonkonogiy V. M., Oparin A. V. Avtomatizirovannoe proektirovanie mekhanizmov s vnutrenney vibrozashhitoy // Kholodil'naya tekhnika i tekhnologiya. 2005. Vol. 2. P. 107–109.

Szhul'gin K. Osnovnye parametry diskovykh EMF na chastotu 500 kGts // Radio. 2002. Vol. 5. P. 59–61.

Carr J. J. Radio Society of Great Britain. RF components and circuits. Oxford: Newnes, 2002. P. 34–65. doi:10.1016/b978-075064844-8/50004-9 







Copyright (c) 2018 Olexandr Stanovskyi

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2664-9969, ISSN (on-line) 2706-5448