Compensation of the spatial deviations of measuring elements in CAD

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.123502

Keywords:

elements of metrological instruments, spatial deviation, computer-aided design, error and reliability of measurements

Abstract

The object of research is the processes of computer-aided design of the elements of complex measuring instruments intended to work under conditions of significant deviations in space caused by mechanical or thermal stresses. One of the most problematic places is that any protection state completely eliminates unwanted deviations of the elements. This is especially true for measurement objects that have large dimensions (tens of meters) and weight, opacity, high temperatures (hundreds of degrees), significant external influences of unpredictable nature, and the like. Models of behavior of such objects under load are extremely complex, and methods of their analysis and use in CAD are not available at all, which leads to the laying of significant errors of the future measurement already at the design stage.

In the course of the study, the theory of analysis of technical systems, the theory of measurements, the theory of the resistance of materials and oscillations, the theory of computer-aided design were used. To develop a capacitive method for measuring the density of parts of large-sized reinforced concrete objects from heterogeneous materials, methods of pattern recognition and a virtual object are used.

Theoretical and experimental virtual models of electrical characteristics of the elements of measuring instruments and models of their deviation are obtained. Models are used in automated design systems for complex means of capacitive measurement of concrete. The first is mathematical, in which compensation is performed solely by making changes to the measurement results. The second is mechanical, in which compensation is made by changing the geometry of the measuring tool (with static deviation) or depreciation of their elements (with dynamic).

Thanks to this, it is possible to create a new subsystem of CAD «DEVICOM», with the help of which shock absorbers were designed to control the technological process of manufacturing the reinforced concrete product «Power transmission line support», which, as a result, reduced the amount of defective products by 7.4 %.

Author Biographies

Olexandr Stanovskyi, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Doctor of Technical Science, Professor

Department of Oilgas and Chemical Mechanical Engineering

Alla Toropenko, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

PhD

Department of Oilgas and Chemical Mechanical Engineering

Elena Lebedeva, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

PhD

Department of Oilgas and Chemical Mechanical Engineering

Viktoriya Dobrovolska, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Oilgas and Chemical Mechanical Engineering

Olesya Daderko, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Oilgas and Chemical Mechanical Engineering

References

  1. Baranov V. V. Tekhnologicheskiy audit predpriyatiya v semi shagakh. Elitarium. TSentr dopolnitel'nogo obrazovaniya. Available at: http://www.elitarium.ru/tekhnologicheskijj_audit_predprijatija/. Last accessed: 03.05.2016.
  2. Osnovni pytannia proektuvannia ta povirky tsyfrovykh vymiriuvalnykh pryladiv. Available at: http://elib.lutsk-ntu.com.ua/book/fepes/pruladobyd/2015/15-07/other/lekcziya_30__osnovni_pitannya_proektuvannya_ta_povirki_czifrovix_vimiryuval_nix_priladiv.pdf. Last accessed: 11.01.2018.
  3. Oborskyi, G. A., Stanovskyi, A. L., Prokopovich, I. V., Duhanina, M. A. (2014). Selection of metrological support of management of complex foundry objects with hardly measurable parameters. Eastern-European Journal of Enterprise Technologies, 6 (3 (72)), 41–47. doi:10.15587/1729-4061.2014.32420
  4. Brignell, J. E., Young, R. (1979). Computer-aided measurement. Journal of Physics E: Scientific Instruments, 12 (6), 455–463. doi:10.1088/0022-3735/12/6/002
  5. Kuts, Yu. V., Lysenko, Yu. Yu., Protasov, A. H. (2017). Pryntsypy proektuvannia zasobiv elektromahnitnoho neruinivnoho kontroliu. Suchasni prylady, materialy i tekhnolohii dlia neruinivnoho kontroliu i tekhnichnoi diahnostyky mashynobudivnoho i naftohazopromyslovoho obladnannia. Ivano-Frankivsk, 44–45.
  6. Shherbinskiy, V. G., Pafos, S. K., Gurvich, A. K. (2002). Ul'trazvukovaya defektoskopiya: vchera, segodnya, zavtra. V mire nerazrushayushhego kontrolya, 4, 18.
  7. Stanovskaia, T. P., Dukhanyna, M. A., Shykhyreva, Yu. V. (2013). Infrakrasnyi metod izmerenyia teplovykh parametrov zatverdevanyia betona. Kholodylna tekhnika i tekhnolohiia, 2 (142), 112–115.
  8. Angrisani, L., Bechou, L., Dallet, D., Daponte, P., Ousten, Y. (2002). Detection and location of defects in electronic devices by means of scanning ultrasonic microscopy and the wavelet transform. Measurement, 31 (2), 77–91. doi:10.1016/s0263-2241(01)00032-x
  9. Matlack, K. H., Kim, J.-Y., Jacobs, L. J., Qu, J. (2014). Review of Second Harmonic Generation Measurement Techniques for Material State Determination in Metals. Journal of Nondestructive Evaluation, 34 (1), 273. doi:10.1007/s10921-014-0273-5
  10. Ho, C., Robinson, A., Miller, D., Davis, M. (2005). Overview of Sensors and Needs for Environmental Monitoring. Sensors, 5 (12), 4–37. doi:10.3390/s5010004
  11. Yakovlev, M. Yu., Volobuiev, A. P. (2007). Otsinka metrolohichnoi nadiinosti zasobiv vymiriuvalnoi tekhniky aviatsiinykh radiotekhnichnykh system na etapi proektuvannia. Systemy ozbroiennia i viiskova tekhnika, 2, 53–55.
  12. Mishhenko, S. V., Tsvetkov, E. I., Chernyshova, T. I. (2001). Metrologicheskaya nadezhnost' izmeritel'nykh sredstv. Moscow: Mashinostroenie, 96.
  13. Chinkov, V. N., Mel'nichenko, A. E. (2004). Izbytochnaya model' nadezhnoy ekspluatatsii sredstv izmeritel'noy tekhniki. Ukrainskiy metrologicheskiy zhurnal, 2, 57–60.
  14. Prokopovych, Y. V., Dukhanyna, M. A., Monova, D. A. (2013). Upravlenie svoistvamy strukturochuvstvytelnykh obiektov lyteinoho proyzvodstva. Pratsi Odeskoho politekhnichnoho universytetu, 2 (41), 13–18.
  15. Mekhanichni metody neruinivnoho kontroliu mitsnosti betonu. BudMaister. Available at: http://budmayster.pp.ua/1511-mehanchn-metodi-neruynvnogo-kontrolyu-mcnost-betonu.html. Last accessed: 11.11.2017.
  16. Yakovlev, M. Y., Volobuyev, A. P. (2006). Evaluation of the Metrological Reliability of the Means of Measuring Techniques of the Aircraft Radio Systems. Modern Problems of Radio Engineering, Telecommunications and Computer Science. Lviv-Slavske, 591–592. doi:10.1109/tcset.2006.4404644
  17. Stanovskyi, O. L., Shvets, P. S., Toropenko, A. V., Bondarenko, V. V., Stanovskyi, A. O., Shena, O. A. et al. (2015). Optymizatsiia zviaznosti elementiv v zadachakh avtomatyzovanoho proektuvannia system. Visnyk naukovykh prats NTU «KhPI», 49 (11/58), 170–175.
  18. Porter, B. E. (2011). Handbook of Traffic Psychology. Norfolk: Old Dominion University, 536. doi:10.1016/c2009-0-01975-8
  19. Rao, P. (2008). Manufacturing Technology: Foundry, Forming and Welding. New Delhi: Tata McGraw Hill, 485.
  20. Prokopovych, I. V., Dukhanina, M. O., Stanovska, I. I., Valid, Sh. Kh., Dobrovolska, V. V., Toropenko, O. V. (2016). Metrolohichne zabezpechennia kontroliu shchilnosti heterohennykh materialiv. Visnyk NTU «KhPI»: Mekhaniko-tekhnolohichni systemy ta kompleksy, 50 (1222), 22–28.
  21. Measurement Error (Observational Error). (2016). Statistics How To. Available at: http://www.statisticshowto.com/measurement-error/ Last accessed: 21.12.2017.
  22. Stanovskaya, T. P., Tonkonogiy, V. M., Oparin, A. V. (2005). Avtomatizirovannoe proektirovanie mekhanizmov s vnutrenney vibrozashhitoy. Kholodil'naya tekhnika i tekhnologiya, 2, 107–109.
  23. Szhul'gin, K. (2002). Osnovnye parametry diskovykh EMF na chastotu 500 kGts. Radio, 5, 59–61.
  24. Carr, J. J. (2002). Radio Society of Great Britain. RF components and circuits. Oxford: Newnes, 34–65. doi:10.1016/b978-075064844-8/50004-9

Published

2017-12-28

How to Cite

Stanovskyi, O., Toropenko, A., Lebedeva, E., Dobrovolska, V., & Daderko, O. (2017). Compensation of the spatial deviations of measuring elements in CAD. Technology Audit and Production Reserves, 1(2(39), 52–60. https://doi.org/10.15587/2312-8372.2018.123502

Issue

Section

Systems and Control Processes: Original Research