Visualization of the pool fire action zones with using MapInfo GIS for the number of filling stations of the Odessa (Ukraine) residential district

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.124241

Keywords:

potentially dangerous object, filling station, pool fire, geo-information system, domino effect

Abstract

The object of research is a system of filling stations (traditional filling stations) of the traditional type within the Malinovsky district of Odessa (Ukraine). One of the most problematic places of functioning of filling stations, as potentially dangerous objects, is their location within residential areas, on motorways with high traffic intensity, close to other infrastructure facilities. A significant danger is the location of several filling stations in a limited area, in close proximity to each other.

The radii of the action zones of thermal radiation from a pool fire at various intensities for 4 types of fuel (gasoline A-80, A-95, A-95, diesel fuel) are calculated. It is shown that dangerous for a person distances from filling stations are reached at 650 m. The safest of all fuels is diesel fuel, and the safety of gasoline rises with the growth of the octane number.

In the course of the study, a method for visualizing the action zones of the pool fire factor is developed using MapInfo GIS. The proposed method makes it possible to visualize the calculated radii of damage by thermal radiation on the map of the Malinovskiy district based on the geology of each filling station. It is clearly shown that the filling stations cover the territory of the district with a dense network and create the risks of damaging the consequences of an emergency fire of its most part.

Due to this, the possibilities of visualizing not only the mutual location of the filling stations as sources of negative impacts and potential accidents, but also of the respective recipients under specific urban conditions

In comparison with similar examples of assessments of the consequences of accidents at filling stations, the geo-information system makes it possible to identify the groups of filling stations for which the development of an emergency situation is possible by the mechanism of «dominoes». In the presence of an external ignition source, an escalation of the accident may develop, which in turn can initiate dangerous events at the next filling station.

Author Biographies

Kateryna Vasiutynska, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Applied Ecology and Hydrogasdynamics

Sergej Smyk, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

PhD, Associate Professor

Department of Applied Ecology and Hydrogasdynamics

Oleksii Ivanov, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Postgraduate Student

Department of Information Systems

Irina Shevchuk, Odessa National Polytechnic University, 1, Shevchenko ave., Odessa, Ukraine, 65044

Department of Applied Ecology and Hydrogasdynamics

References

  1. Pro zatverdzhennia Metodyky vyznachennia ryzykiv ta yikh pryiniatnykh rivniv dlia deklaruvannia bezpeky obiektiv pidvyshchenoi nebezpeky. Order of the Ministry of Labor and Social Policy of Ukraine No. 637 from December 4, 2002. Informatsionnyi portal Ukrainy. Available at: http://ua-info.biz/legal/basene/ua-cmelgt/index.htm. Last accessed: 11.01.2018.
  2. Mykhailiuk, O. P., Kravtsiv, S. Ya. (2012). Problemy zabezpechennia pozhezhovybukhobezpeky avtozapravnykh stantsii. Problemy pozharnoi bezopasnosti, 32, 149–154.
  3. Vasiutynska, K., Arsirii, O., Ivanov, O. (2017). Development of the method for assessing the action zones of hazards in an emergency at a city filling station using geoinformation technology. Technology Audit and Production Reserves, 6 (3 (38)), 29‒38. doi:10.15587/2312-8372.2017.119505
  4. Jelnovach, A. N., Prokopenko, N. V. (2014). Analiz ekologicheskih vozdeistvii i riskov pri ekspluatatsii avtozapravochnyh stantsii. Vestnik HNADU, 67, 78–88.
  5. Instruktsiia shchodo vymoh pozhezhnoi bezpeky pid chas proektuvannia avtozapravnykh stantsii (2005, December 6). Order of the Ministry of Ukraine for Emergencies and for Protection of Population from the Consequences of the Chornobyl Catastrophe No. 376 from December 6, 2005. Available at: http://zakon.rada.gov.ua/go/z0291-06. Last accessed: 10.01.2018.
  6. Mazorenko, D. Yu., Tishhenko, L. N., Oleynik, H. Yu. et al. (2007). Grazhdanskaya zashhita oblasti. Vol. 2. Kharkiv: ID «Drukarnya No. 13», 540.
  7. Taridala, S., Yudono, A., Ramli, M. I., Akil, A. (2017). Expert System Development for Urban Fire Hazard Assessment. Study Case: Kendari City, Indonesia. IOP Conference Series: Earth and Environmental Science, 79, 12–35. doi:10.1088/1755-1315/79/1/012035
  8. Zhang, H. (2014). The Research about Fire Prevention of Vehicle Refuelling Stations. Procedia Engineering, 71, 385–389. doi:10.1016/j.proeng.2014.04.055
  9. Nakayama, J., Sakamoto, J., Kasai, N., Shibutani, T., Miyake, A. (2016). Preliminary hazard identification for qualitative risk assessment on a hybrid gasoline-hydrogen fueling station with an on-site hydrogen production system using organic chemical hydride. International Journal of Hydrogen Energy, 41 (18), 7518–7525. doi:10.1016/j.ijhydene.2016.03.143
  10. Fuentes-Bargues, J., Gonzalez-Cruz, M., Gonzalez-Gaya, C., Baixauli-Perez, M. (2017). Risk Analysis of a Fuel Storage Terminal Using HAZOP and FTA. International Journal of Environmental Research and Public Health, 14 (7), 705. doi:10.3390/ijerph14070705
  11. Magambo, J. O. (2016). Operational Risk Management in Petroleum Filling Station in Kenya: A Survey of Nairobi Based Petroleum Filling Stations. Fall. Available at: http://erepo.usiu.ac.ke/handle/11732/3098
  12. Park, K. (2017). Simplified risk assessment on fire hazard of LPG filling station. Korean Journal of Chemical Engineering, 34 (3), 642–650. doi:10.1007/s11814-016-0325-x
  13. Hemmatian, B., Abdolhamidzadeh, B., Darbra, R. M., Casal, J. (2014). The significance of domino effect in chemical accidents. Journal of Loss Prevention in the Process Industries, 29, 30–38. doi:10.1016/j.jlp.2014.01.003
  14. Hemmatian, B., Planas, E., Casal, J. (2015). Fire as a primary event of accident domino sequences: The case of BLEVE. Reliability Engineering & System Safety, 139, 141–148. doi:10.1016/j.ress.2015.03.021
  15. Zhou, J., Reniers, G. (2016). Petri-net based simulation analysis for emergency response to multiple simultaneous large-scale fires. Journal of Loss Prevention in the Process Industries, 40, 554–562. doi:10.1016/j.jlp.2016.01.026
  16. Derevianko, I. H. (2014). Osoblyvosti pozhezhnoi nebezpeky ta hasinnia pozhezh na avtozapravnykh stantsii. Problemy tsyvilnoho zakhystu: upravlinnia, poperedzhennia, avariino-riatuvalni ta spetsialni roboty. Kharkiv: Natsionalnyi universytet tsyvilnoho zakhystu Ukrainy, 101–103.
  17. Voytovich, D. P., Hulida, Е. М. (2015). Emission of toxic combustion products caused by fire at storages of crude oil and petroleum products. Scientific Bulletin of National Mining University, 5, 91‒97.
  18. Radchenko, Yu. S. (2008). Otsenka posledstviy avariy na avtozapravochnykh stantsiyakh. Trudy BGTU. Seriya 4: Khimiya, tekhnologiya organicheskikh veshhestv i biotekhnologiya, 4, 125–129.
  19. DSTU 2272:2006 Pozhezhna bezpeka. Terminy ta vyznachennia osnovnykh poniat. (2007). Introduced: July 1, 2007. Kyiv: Ukrainy, 31.
  20. NAPB B.03.002-2007. Normy vyznachennia katehorii prymishchen, budynkiv ta zovnishnikh ustanovok za vybukhopozhezhnoiu ta pozhezhnoiu nebezpekoiu. Vpershe (zi skasuvanniam NAPB B.07.005-86). (2007). Order of the Ministry of Ukraine on Emergencies and Affairs of Population Protection from the Consequences of the Chernobyl Disaster No. 833 from December 3, 2007. Kyiv. Available at: https://dnaop.com/html/32980/doc-НАПБ_Б.03.002-2007. Last accessed: 16.01.2018.
  21. MapInfo Professional. 12.0 USER GUIDE. (2013). New York: Pitney Bowes Software Inc., One Global View, Troy, 598. Available at: http://reference1.mapinfo.com/software/mapinfo_pro/english/12.0/MapInfoProfessionalUserGuide.pdf. Last accessed: 18.12.2017.

Published

2017-12-28

How to Cite

Vasiutynska, K., Smyk, S., Ivanov, O., & Shevchuk, I. (2017). Visualization of the pool fire action zones with using MapInfo GIS for the number of filling stations of the Odessa (Ukraine) residential district. Technology Audit and Production Reserves, 1(3(39), 30–39. https://doi.org/10.15587/2312-8372.2018.124241

Issue

Section

Ecology and Environmental Technology: Original Research