Efficiency estimation of cation-exchange recovery of heavy metals from solutions containing their mixtures

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.129633

Keywords:

wastewater treatment, electroextraction of cations of heavy metals, ion exchange method

Abstract

The object of research is the washing waste water of galvanic plants containing heavy metal cations. The most common reagent methods for purification of galvanic drains do not provide the required degree of water purification, are accompanied by the loss of valuable components and the formation of significant amounts of toxic sludge. Ion exchange is promising in development of wastewater treatment of galvanic productions.

One of the most important problems of ion-exchange technology is the processes of regeneration of ion exchangers, and, in particular, the recycling of spent regeneration solutions. The most promising in the recovery of regeneration solutions is the electrochemical method. However, electroextraction of zinc and nickel is practically impossible from acidic solutions without separation of the electrode space by the membrane. In addition, effluents from the galvanic industry contain mixtures of heavy metal ions. This complicates the process of wastewater treatment and the return of valuable components to production.

In the course of the study, a strongly acidic cation exchanger KU-2-8 in the Na+-form is used to study the processes of combined sorption of heavy metal ions. Regeneration of the cation exchanger is carried out with solutions of sulfuric and hydrochloric acids. Electroextraction of zinc and nickel from acid regeneration solutions is carried out in a two-cell electrolyzer with an anion-exchange membrane MA 41.

The obtained results indicate that under conditions of the concentration of heavy metals on cation exchanger KU-2-8, efficient separation can’t be achieved. It is established that ions of heavy metals are sorbed individually and in mixtures with other ions of heavy metals are effectively desorbed by solutions of sulfuric and hydrochloric acids.

The use of a two-cell electrolyzer, in contrast to carrying out electrolysis processes without separation of the electrode space, almost completely eliminates zinc and nickel ions from acidic regenerative rods. And to obtain a solution of sulfuric acid in the anode chamber at a concentration of 239–651 meq/dm3.

Author Biographies

Nikolai Gomelya, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Professor, Head of the Department

Department of Ecology and Technology of Plant Polymers

Ganna Trokhуmenko, Admiral Makarov National University of Shipbuilding, 9, Heroes of Stalingrad ave., Mykolaiv, Ukraine, 54025

PhD, Associate Professor, Head of the Department

Department of Environmental Safety and Occupational Safety

Tatiana Shabliy, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

Doctor of Technical Sciences, Associate Professor

Department of Ecology and Technology of Plant Polymers

Olena Hlushko, National Technical University of Ukraine «Igor Sikorsky Kyiv Polytechnic Institute», 37, Peremohy ave., Kyiv, Ukraine, 03056

PhD, Associate Professor

Department of Ecology and Technology of Plant Polymers

References

  1. Stanko, O. M. (2012). Vazhki metaly u vodi: zabrudnennia richky Dnister za ostanni 10 rokiv (terytoriia Lvivskoi oblasti). Suchasni problemy toksykolohii, 3–4, 58–63.
  2. Adanez, J., Abad, A., Garcia-Labiano, F., Gayan, P., de Diego, L. F. (2012). Progress in Chemical-Looping Combustion and Reforming technologies. Progress in Energy and Combustion Science, 38 (2), 215–282. doi:10.1016/j.pecs.2011.09.001
  3. Ivanter, E. V., Medvedev, N. V. (2007). Ekologicheskaya toksikologiya prirodnykh populyatsiy. Moscow: Nauka, 229.
  4. Gomelya, M., Trohymenko, G., Hlushko, O., Shabliy, T. (2018). Electroextraction of heavy metals from wastewater for the protection of natural water bodies from pollution. Eastern-European Journal of Enterprise Technologies, 1 (10 (91)), 55–61. doi:10.15587/1729-4061.2018.123929
  5. Gomelya, N. D., Hlushko, E. V., Trohymenko, A. G., Butchenko, L. I. (2017). Elektroliticheskoe izvlechenie ionov tyazhelykh metallov iz solyanokislykh rastvorov. Energotekhnologii i resursosberezhenie, 1, 60–67.
  6. Sub, M., Rub, L. (1998). Abrennunq von Kupfer, Nickel, Chrom, Zink und Silver aus galvanischen Spulwasserh an Jonenansta – uscherharzen und Kohlenstoffsorbenzien. Nachp. Aussenhand, 51 (244), 61–87.
  7. Erusalimskaya, E. M. (1988). Primenenie katodov s razvitoy poverkhnost'yu dlya intensifikatsii protsessa elektrokhimicheskoy ochistki promyshlennykh stochnykh vod ot nikelya. Fiziko-khimicheskaya ochistka i metody analiza promyshlennykh stochnykh vod. Moscow, 40–42.
  8. Fu, F., Wang, Q. (2011). Removal of heavy metal ions from wastewaters: A review. Journal of Environmental Management, 92 (3), 407–418. doi:10.1016/j.jenvman.2010.11.011
  9. Gomelya, M. D., Radovenchyk, V. M., Hlushko, O. V. (2007). Ochystka halvanostokov ot yonov kadmyia yonoobmennim metodom. Ekolohiia i resursy, 16, 57–62.
  10. Ahmad, A., Rafatullah, M., Sulaiman, O., Ibrahim, M. H., Chii, Y. Y., Siddique, B. M. (2009). Removal of Cu(II) and Pb(II) ions from aqueous solutions by adsorption on sawdust of Meranti wood. Desalination, 247 (1–3), 636–646. doi:10.1016/j.desal.2009.01.007
  11. Izvlechenie ionov nikelya iz otrabotannykh rastvorov khimicheskogo nikelirovaniya. (1986). Izv A.N. GSSR. Ser. Khim., 12 (4), 301–303.
  12. Gomelya, N. D., Sagaydak, I. S. (1999). Razrabotka ekologicheski chistoy tekhnologii izvlecheniya tsinka iz gal'vanostokov. Perspektivnye napravleniya razvitiya ekologii, ekonomiki, energetiki. Odessa, 81–85.
  13. Makarenko, I. M. (2014). Electrochemical desalination of solutions, containing hardness ions. Eastern-European Journal of Enterprise Technologies, 4 (6 (70)), 48–53. doi:10.15587/1729-4061.2014.26243
  14. Omelchuk, Y. A., Hlushko, O. V., Kamaiev, V. S., Gomelya, M. D. (2011). Electrochemical removal of nickel ions from neutral and acid regeneration solutions. Eastern-European Journal of Enterprise Technologies, 6 (6 (54)), 26–29. Available at: http://journals.uran.ua/eejet/article/view/2291
  15. Aleskovskiy, V. B. (Ed.). (1988). Fiziko-khimicheskie metody analiza. Prakticheskoe rukovodstvo. Leningrad: Khimiya, 376.
  16. Lurie, Yu. Yu. (1984). Analiticheskaya khimiya promyshlennykh stochnykh vod. Moscow: Khimiya, 448.
  17. Sahaidak, I. S. (2000). Lokalizatsiia ta zneshkodzhennia stichnykh vod, zabrudnenykh spolukamy khromu, kadmiiu ta tsynku. Kyiv, 11–12.
  18. Pikkering, U. F. (1977). Sovremennaya analiticheskaya khimiya. Moscow: Khimiya, 560.
  19. Donchenko, M. I., Redko, R. M., Kovalenko, S. Yu. (2007). Elektrokhimichne osadzhennia nikeliu iz sirchanokyslykh eliuativ, utvorenykh pry reheneratsii kationitiv. Suchasni problemy okhorony dovkillia, ratsionalnoho vykorystannia vodnykh resursiv ta ochystky pryrodnykh i stichnykh vod: 2007 rik. Kyiv: Tovarystvo «Znannia Ukrainy», 69–72.

Published

2017-12-28

How to Cite

Gomelya, N., Trokhуmenko G., Shabliy, T., & Hlushko, O. (2017). Efficiency estimation of cation-exchange recovery of heavy metals from solutions containing their mixtures. Technology Audit and Production Reserves, 2(3(40), 41–47. https://doi.org/10.15587/2312-8372.2018.129633

Issue

Section

Ecology and Environmental Technology: Original Research