Evaluation of the environmental status of agricultural resources in the territory of Ukraine under conditions of climate change

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.134890

Keywords:

agroclimatic resources, hydrothermal index, bioclimatic potential, adaptation to climate change

Abstract

The object of research is agro-climatic resources of Ukraine, characterized by a combination of agro-climatic factors acting on the growth conditions and plants development, forming the productivity of agricultural crops. These factors are quantitative and determined by agroclimatic indicators, indicating the relationship between climate factors and growth conditions, plants development, crop formation.

One of the most problematic climate assessment issues for agricultural production is the processes of heat and water exchange in the soil-plant-atmosphere system, where biophysical and physiological processes take place. In addition, we must take into account the environmental conditionsfor the plants: minimum and critical temperatures of air, soil; total temperatures required for crops ripening; the amount of moisture.

Models to forecast potential impacts of climate change on agricultural productivity, adaptation to these changes were used in the study. Agro-climatic resources of the territory were assessed on the indicators of heat supply, where the sum of active and effective temperatures was calculated. Index of climate stability was used in the assessment of the ecological status of agro-climatic resources. Due to elevated heat supply an increase in the duration of agricultural crops growing season is expected.

The example of Kharkiv region was further characterized by the main features of the current temperature-humidity regime. It has been established that the greatest increase in the air temperature has been recorded since the mid 70-ies of the last century.

It is established that during the annual course the air temperature will increase with an average linear trend of 0.3-0.4 ºС for 10 years. The amplitudes of air temperature fluctuations are significant enough to destabilize climatic conditions in the north. The southern and south-western parts of the region have a higher index of weather resistance due to the established air temperature regime and the nature of the underlying surface.

This ensures that measures can be taken to adapt agriculture to modern changes in agro-climatic resources. The proposed measures of agriculture adaptation to modern climate change can be successfully applied in neighboring countries, in particular, Moldova, Belarus.

Author Biographies

Svitlana Reshetchenko, V. N. Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, Ukraine, 61022

Lecturer

Department of Physical Geography and Cartography

Nataliia Popovych, V. N. Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, Ukraine, 61022

Senior Lecturer

Department of Physical Geography and Cartography

Boris Shulika, V. N. Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, Ukraine, 61022

Senior Lecturer

Department of Physical Geography and Cartography

Andrey Porvan, Khrakiv National University of Radio Electronics, 14, Nauky ave., Kharkiv, Ukraine, 61166

PhD, Assistant Professor

Department of Biomedical Engineering

Nadiia Cherkashyna, V. N. Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, Ukraine, 61022

Senior Lecturer

Department of English Language

References

  1. Transforming our world: the 2030 Agenda for Sustainable Development (2015). UN General Assembly. Available at: http://www.refworld.org/docid/57b6e3e44.html. Last accessed: 11.06.2017.
  2. Tarariko, O. H. (2016). SWOT-analiz i analiz prohalyn (GAP-analiz) polityk, prohram, planiv i zakonodavchykh aktiv u haluzi silskoho hospodarstva ta pidhotovka rekomendatsii shchodo yikh udoskonalennia vidpovidno do polozhen Konventsii Rio. Kherson: FOP Hrin D. S., 102.
  3. Climate Change in Eastern Europe. Belarus, Moldova, Ukraine. (2012). ENVSEC, Zoi environment network, 59.
  4. Iedyna kompleksna stratehiia ta plan dii rozvytku silskoho hospodarstva ta silskykh terytorii v Ukraini na 2015–2020 roky: proekt vid 26 zhovtnia 2015 roku. (2015). Ministerstvo ahrarnoi polityky ta prodovolstva Ukrainy, 94.
  5. Stratehiia staloho rozvytku Ukrainy na period do 2030 roku: proekt vid 29.12.2016. Versiia 3.4. (2016). Available at: http://bit.ly/2t8QY6V. Last accessed: 11.06.2017.
  6. Kosovets, O. O., Kulbida, M. M., Heyko, L. A. et al. (Eds.). (2006). Klimatychnyy kadastr Ukrayiny. Kyiv: Derzhavna Hidrometeorolohichna sluzhba, UkrNDHMI, TS·HO. 1 elektron. opt. dysk (CD-R).
  7. Boichenko, S. H. (2008). Napivempirychni modeli ta stsenarii hlobalnykh i rehionalnykh zmin klimatu. Kyiv: Naukova dumka, 309.
  8. Wilby, R. L., Troni, J., Biot, Y., Tedd, L., Hewitson, B. C., Smith, D. M., Sutton, R. T. (2009). A review of climate risk information for adaptation and development planning. International Journal of Climatology, 29 (9), 1193–1215. doi: http://doi.org/10.1002/joc.1839
  9. Polovyi, A. M., Kulbida, M. I., Adamenko, T. I., Trokhymova, I. T. (2005). Vplyv zmin klimatu na silske hospodarstvo pivdnia Ukrainy. Meteorolohiia, klimatolohiia i hidrolohiia, 49, 252–260.
  10. Orlandini, S., Nejedlik, P., Eitzinger, J., Alexandrov, V., Toulios, L., Calanca, P. et al. (2008). Impacts of Climate Change and Variability on European Agriculture. Annals of the New York Academy of Sciences, 1146 (1), 338–353. doi: http://doi.org/10.1196/annals.1446.013
  11. Olesen, J. E., Trnka, M., Kersebaum, K. C., Skjelvag, A. O., Seguin, B., Peltonen-Sainio, P. et al. (2011). Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy, 34 (2), 96–112. doi: http://doi.org/10.1016/j.eja.2010.11.003
  12. White, J. W., Hoogenboom, G., Kimball, B. A., Wall, G. W. (2011). Methodologies for simulating impacts of climate change on crop production. Field Crops Research, 124 (3), 357–368. doi: http://doi.org/10.1016/j.fcr.2011.07.001
  13. Trnka, M., Olesen, J. E., Kersebaum, K. C., Skjelvag, A. O., Eitzinger, J., Seguin, B. et al. (2011). Agroclimatic conditions in Europe under climate change. Global Change Biology, 17 (7), 2298–2318. doi: http://doi.org/10.1111/j.1365-2486.2011.02396.x
  14. Boychenko, S., Voloshchuk, V., Movchan, Y., Serdjuchenko, N., Tkachenko, V., Tyshchenko, O., Savchenko, S. (2016). Features of climate change on Ukraine: scenarios, consequences for nature and agroecosystems. Proceedings of the National Aviation University, 69 (4), 96–113. doi: http://doi.org/10.18372/2306-1472.69.11061
  15. Mishhenko, Z. A., Kirnasovskaya, N. V. (2011). Agroklimaticheskie resursy Ukrainy i urozhay. Odessa: Ekologiya, 296.
  16. Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., Gutman, G. G. et al. (2010). Use of NDVI and Land Surface Temperature for Drought Assessment: Merits and Limitations. Journal of Climate, 23 (3), 618–633. doi: http://doi.org/10.1175/2009jcli2900.1
  17. Bouma, E. (2005). Development of comparable agro-climatic zones for the international exchange of data on the efficacy and crop safety of plant protection products1. EPPO Bulletin, 35 (2), 233–238. doi: http://doi.org/10.1111/j.1365-2338.2005.00830.x
  18. Bozhko, L. Yu. (2013). Otsinka vplyvu ekstremalnykh yavyshch na produktyvnist silskohospodarskykh kultur. Odessa, 240.
  19. Trofymova, I. V. (2011). Adaptation to climate change: impacts, vulnerability, risks. Environmental Safety and Natural Resources, 7, 128–135.
  20. Osadchyjl, V., Babichenko, V. (2012). Dynamics of adverse meteorological phenomena in Ukraine. Ukrainian Geographical Journal, 4, 8–14. Available at: https://ukrgeojournal.org.ua/en/node/345
  21. Shkolnyi, Ye. P., Popovych, P. P. (2004). Doslidzhennia statystychnoi struktury polia serednomisiachnoi kilkosti opadiv dlia raioniv Ukrainy u kholodnyi period. Meteorolohiia, klimatolohiia ta hidrolohiia, 48, 5–12.
  22. Loboda, N. S., Serbova, Z. F., Bozhok, Y. V. (2015). The assessment of the impact of climate change on water resources of Ukraine based on the model «climate- runoff» under global warming scenario A2. Hidrolohiya, hidrohimiya i hidroekologiya, 1, 8–17.
  23. Snizhko, S., Yazuk, M., Kuprikov, I., Shevchenko, O., Strutinska, V., Krakovska, S. et al. (2012). Otsinka mozhlyvykh zmin vodnykh resursiv mistsevoho stoku v Ukraini v XXI stolitti. Vodne hospodarstvo Ukrainy, 6, 8–16.
  24. Snezhko, S. I., Kuprikov, I. V., Shevchenko, O. G., Pavelchuk, E. M., Didovets, Yu. S. (2014). Ispol'zovanie vodno-balansovoy modeli turka i chislennoy regional'noy modeli Remo dlya otsenki vodnykh resursov mestnogo stoka v Ukraine v XXI veke. Vestnik Bryanskogo gosudarstvennogo universiteta, 191–201.
  25. Pluntke, T., Barfus, K., Myknovych, A., Bernhofer, K. (2010). Hydrologic Effects of Climate Change in the Western Bug Basin. Proceedings of the Global and Regional Climate Change. Kyiv. Available at: https://www.ufz.de/export/data/14/40637_Konf_beitrag_Kiev_2010_Pluntke.pdf
  26. Williams, J. W., Jackson, S. T. (2007). Novel climates, no-analog communities, and ecological surprises. Frontiers in Ecology and the Environment, 5 (9), 475–482. doi: http://doi.org/10.1890/070037
  27. VanDerWal, J., Shoo, L. P., Williams, S. E. (2009). New approaches to understanding late Quaternary climate fluctuations and refugial dynamics in Australian wet tropical rain forests. Journal of Biogeography, 36 (2), 291–301. doi: http://doi.org/10.1111/j.1365-2699.2008.01993.x

Published

2018-01-23

How to Cite

Reshetchenko, S., Popovych, N., Shulika, B., Porvan, A., & Cherkashyna, N. (2018). Evaluation of the environmental status of agricultural resources in the territory of Ukraine under conditions of climate change. Technology Audit and Production Reserves, 3(3(41), 21–32. https://doi.org/10.15587/2312-8372.2018.134890

Issue

Section

Ecology and Environmental Technology: Original Research