Increasing the technical level of a torque flow pump by changing the geometry of a flowing part

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.135773

Keywords:

torque flow pump, impeller, technical level, turbulence model

Abstract

The object of research is a pump of dynamic principle of action, namely a TFP «TURO» type (Switzerland).

The main TFP disadvantage is a lower value of the efficiency compared with centrifugal pumps. This is due to the peculiarity of their working process – the formation of a longitudinal vortex in the free chamber of the pump, the maintenance of which consumes part of the power consumed by the pump.

The analysis of a priori information indicates the expediency of using a change in the geometry of the flowing part of the pump as a means of influencing its pressure and energy characteristics. Extending the part of the blades of the impeller to the free chamber allows the combined working process (blade and vortex) to be used in the pump, which will increase the efficiency of the pump without losing the significant advantages inherent in this type of pumps.

Experimental impellers were made and a test was carried out on an experimental bench. The obtained results indicate the possibility of increasing the head and efficiency of the pump while maintaining the location of the optimal regime.

The nomenclature of quality indicators is determined, according to which the comparison of the created pump and the analog pump is carried out. The Harrington method (the «desired function» method) was chosen to determine the basic quality measure. The weight coefficients for quality indicators are determined and the integral indicator of the technical level of the created pump and analog pump is calculated.

The use of the SST model of turbulence for the numerical simulation of flow in the TFP flowing part is substantiated. Numerical calculation is performed and integral values of the pump are obtained.

The proposed design allows to create new pumping equipment with improved performance and a higher technological level, or increase the relevant indicators of existing equipment by making changes to the impeller design. These changes do not require significant costs and do not require the use of complex equipment and can be implemented directly at the site of operation by the company's own forces or the operating organization.

Author Biographies

Vitalii Panchenko, Sumy State University, 2, Rimskogo-Korsakova str., Sumy, Ukraine, 40007

Senior Lecturer

Department of Applied Fluid Aeromechanics

Aleksandr Ivchenko, Sumy State University, 2, Rimskogo-Korsakova str., Sumy, Ukraine, 40007

PhD, Assistant Professor

Department of Manufacturing Engineering, Machines and Tools

Oksana Dynnyk, Konotop Institute of Sumy State University, 24, Myru ave., Konotop, Sumy region, Ukraine, 41615

PhD, Assistant Professor

Department of Electronic Devices and Automation

Olga Drach, Konotop Institute of Sumy State University, 24, Myru ave., Konotop, Sumy region, Ukraine, 41615

PhD, Senior Lecturer

Department of Fundamental and General Scientific Disciplines

References

  1. German, V. F., Kovalev, I. A., Kotenko, A. I.; Gusaka, A. G. (Ed.). (2013). Svobodnovikhrevye nasosy. Sumy: Sumskiy gosudarstvennyy universitet, 159.
  2. German, V. F. (1984). Sozdanie i issledovanie stochnomassnykh svobodnovikhrevykh nasosov povyshennoy ekonomichnosti. Sumy, 154.
  3. Wegener, G. (1968). Einsatz von Turo-Pumpen in der Industrie. Allgemeine Papier, Rundschau, 40, 1208–1210.
  4. Sapozhnikov, S. V. (2002). Uchet gazovoy sostavlyayushhey perekachivaemoy sredy pri opredelenii konstruktsii i rabochey kharakteristiki dinamicheskogo nasosa. Sumy, 206.
  5. Krishtop, I. V., German, V. F., Gusak, A. G. (2015). Svobodnovikhrevye nasosy tipa «Turo». Perspektivy primeneniya v khimicheskikh ustanovkakh. Khіmіchna promislovіst' Ukraini, 2 (127), 40–44.
  6. Vashist, B. V., German, V. F Osobennosti ispol'zovaniya svobodnovikhrevykh nasosov konstruktivnoy skhemy «Wemco». Available at: http://www.essuir.sumdu.edu.ua/bitstream/123456789/31425/1/Vashust.pdf
  7. Rütschi, K. (1968). Die Arbeitweise von Freistrompumpen. Bauzeitung, Schweiz, 86 (32), 575–582.
  8. Yakhnenko, S. M. (2003). Gidrodinamicheskie aspekty blochno-modul'nogo konstruirovaniya dinamicheskikh nasosov. Sumy, 210.
  9. German, V. F., Kochevskiy, A. N., Shhelyaev, A. E. (2007). Vliyanie razlichnykh sposobov dovodki rabochego kolesa na kartinu techeniya i kharakteristiki svobodnovikhrevogo nasosa tipa – TURO. Problemy mashinostroeniya, 10 (1), 24–31.
  10. Zarzycki, M., Rokita, J., Morzynski, S. (1974). Badania pompy kretnej o swobodnym przepływie produkowanej seryjme. Zesz. nauk. PSJ, 425, 103–119.
  11. Bak, E. (1975). Ekonomiczne przeslanki stosowania pomp o swobodnym przeplywie do podnoszenia mieszaniny wody i cial stalych. Prace Instytutu Maszyn Przeplywowych, 235–241.
  12. Grabow, G. (1972). Einflub der Beschaufelung auf das Kennlinienverhalten von Freistrompumpen. Pumpen und Verdichter, 2, 18–21.
  13. Aoki, M. (1983). Studies on the Vortex Pump: 2nd Report, Pump Performance. Bulletin of JSME, 26 (213), 394–398. doi: http://doi.org/10.1299/jsme1958.26.394
  14. Vertyachikh, A. V., German, V. F., Kovalev I. A. (1986). A. s. 1236175 SSSR. Svobodnovikhrevoy nasos. MKI F 04 D 7/04. No. 3780994/25–06; declareted: 15.08.84; published: 07.06.86, Bul. No. 21.
  15. GOST 8.586.1-5-2005. Izmerenie raskhoda i kolichestva zhidkostey i gazov s pomoshh'yu standartnykh suzhayushhikh ustroystv. (2007). Moscow: Standartinform, 87.
  16. RD 50-213-8. Pravila izmereniya raskhoda gazov i zhidkostey standartnymi suzhayushhimi ustroystvami. (1982). Moscow: Izd-vo standartov, 320.
  17. GOST 6134-2007 (ISO 9906:1999). Nasosy dinamicheskie. Metody ispytaniy. (2008). Moscow: Standartinform, 94.
  18. Loytsyanskiy, L. G. (1987). Mekhanika zhidkosti i gaza. Moscow: Nauka. gl. red. fiz.-mat. lit., 840.
  19. Krishtop, I. V. (2015). Usovershenstvovannoe otvodyashhee ustroystvo svobodnovikhrevogo nasosa s uluchshennymi gidravlicheskimi pokazatelyami. Sumy, 188.
  20. ANSYS CFX-Solver Theory Guide. (2006). ANSYS, Inc. Available at: http://product.caenet.cn/Uploadfiles/12872437250986625020081129090050986.pdf
  21. ANSYS CFX-Solver Modeling Guide. (2009). ANSYS, Inc. Available at: http://www.ebah.com.br/content/ABAAABJVwAC/ansys-cfx-solver-modeling-guide-12
  22. Kochevskiy, A. N., Nenya, V. G. (2003). Sovremennyy pokhod k modelirovaniyu i raschetu techeniy zhidkosti v lopastnykh gidromashinakh. Vіsnik SumDU, 13 (59), 178–187.
  23. Khitrykh, D. (2007). ANSYS Turbo: Skvoznaya tekhnologiya proektirovaniya lopatochnykh mashin. ANSYS Solution, 6, 31–37.
  24. Khitrykh, D. (2005). ANSYS Turbo: Obzor modeley turbulentnosti. ANSYS Solution, 1, 9–11.
  25. Kochevsky, A. N., Kozlov, S. N., Aye, K. M., Schelyaev, A. Y., Konshin, V. N. (2005). Simulation of flow inside an axial-flow pump with adjustable guide vanes. Proceedings of FEDSM2005 ASME Fluids Engineering Division Summer Meeting and Exhibition. Houston, 412–423.
  26. ANSYS CFX 11.0 Solver Theory. Release 11.0. (2008). 261. Available at: http://www.ansys.com
  27. GOST 4.118-84. Sistema pokazateley kachestva produktsii. Oborudovanie nasosnoe. Nomenklatura osnovnykh pokazateley. Available at: http://docs.cntd.ru/document/1200004086
  28. RD 26-06-57-86. Metodika otsenki tekhnicheskogo urovnya i kachestva produktsii.
  29. BS EN 16297-1:2012. Pumps. Rotodynamic pumps. Glandless circulators. General requirements and procedures for testing and calculation of energy efficiency index (EEI). Available at: https://shop.bsigroup.com/ProductDetail/?pid=000000000030245022
  30. BS EN 16297-2:2012. Pumps. Rotodynamic pumps. Glandless circulators. Calculation of energy efficiency index (EEI) for standalone circulators. Available at: https://shop.bsigroup.com/ProductDetail/?pid=000000000030245025
  31. BS EN 16297-3:2012. Pumps. Rotodynamic pumps. Glandless circulators. Energy efficiency index (EEI) for circulators integrated in products. Available at: https://shop.bsigroup.com/ProductDetail/?pid=000000000030245028
  32. REHLAMENT KOMISII (IeC) No. 278/2009 vid 6 kvitnia 2009 r. pro vykonannia Dyrektyvy 2005/32/IeC Yevropeiskoho Parlamentu i Rady stosovno vymoh ekodyzainu dlia spozhyvannia elektroenerhii v rezhymi bez navantazhennia i serednoho aktyvnoho koefitsiientu korysnoi dii zovnishnikh dzherel zhyvlennia. (2009). Available at: old.minjust.gov.ua/file/32559.docx
  33. REHLAMENT (IeC) No. 641/2009 vid 22 lypnia 2009 roku pro vykonannia Dyrektyvy 2005/32/IeC Yevropeiskoho Parlamentu ta Rady stosovno ekodyzainu dlia bezzashchilnykovykh avtonomnykh tsyrkuliatsiinykh nasosiv ta bezzashchilnykovykh tsyrkuliatsiinykh nasosiv, intehrovanykh u prystroi. (2009).
  34. Harington, E. C. (1965). The Desirability Function. Industrial Quality Control, 21 (10), 494–498.
  35. Evko, L. S. (1981). Otsenka urovnya pokazateley kachestva kompressorov: Obzornaya informatsiya. Moscow: TSINTIKHIMNEFTEMASH, 25.
  36. Zharkov, Yu., Tsitsiliano, O. (2004). Optimizatsiya kriteriev raboty organov otsenki sootvetstviya s ispol'zovaniem metoda Kharringtona. Standartizatsіya, sertifіkatsіya, yakіst', 4, 36–38.
  37. Fedyukin, V. K. (2004). Upravlenie kachestvom protsessov. Saint Petersburg: Piter, 208.
  38. Azgal'dov, G. G. (1982). Teoriya i praktika otsenki kachestva tovarov (osnovy kvalimetrii). Mosocw: Ekonomika, 256.
  39. Ushakov, I. E., Shishkin, I. F. (2002). Prikladnaya metrologiya. Saint Petersburg: SZTU, 116.
  40. Korn, G., Korn, T. (1974). Spravochnik po matematike (dlya nauchnykh rabotnikov i inzhenerov). Moscow: Izdatel'stvo «Nauka», 832.
  41. Lapach, S. N., Chubenko, A. V., Babich, P. N. (2001). Statisticheskie metody v mediko-biologicheskikh issledovaniyakh s ispol'zovaniem Excel. Kyiv: MORION, 408.
  42. Khamkhanova, D. N. (2006). Teoreticheskie osnovy obespecheniya edinstva ekspertnykh izmereniy. Ulan-Ude: Izd-vo VSGTU, 170
  43. Azgal'dov, G. G. (1989). Kvalimetriya v arkhitekturno-stroitel'nom proektirovanii. Moscow: Stroyizdat, 264.

Published

2018-01-23

How to Cite

Panchenko, V., Ivchenko, A., Dynnyk, O., & Drach, O. (2018). Increasing the technical level of a torque flow pump by changing the geometry of a flowing part. Technology Audit and Production Reserves, 3(1(41), 10–21. https://doi.org/10.15587/2312-8372.2018.135773

Issue

Section

Mechanical Engineering Technology: Original Research