Experimental study and modeling of partial discharge detection system

Yevgeniy Trotsenko, Volodymyr Brzhezitsky, Olexandr Protsenko, Vadim Chumack, Yaroslav Haran

Abstract


The object of research is an electrical system for detecting partial discharges in a sample of high voltage equipment insulation. To evaluate the insulation state of electrical equipment, various methods for detecting partial discharges have been developed and continue to be improved. The role of modeling, virtual experiment and virtual laboratory lessons has recently increased in all areas of engineering. At the same time, some aspects of modeling the electrical systems for partial discharges detection are practically not studied sufficiently. Modeling is an important additional kind of practical training for a further work with measuring and testing equipment in professional activity. The aim of research is determination of the possibility of using an equivalent circuit simulation model in the research and educational process as an analogue of a system for measuring the characteristics of partial discharges.

To measure the characteristics of partial discharges in samples of high-voltage insulation, a special experimental test stand was assembled. The stand allows testing the physical model of insulation by applying alternating current high voltage. To visualize individual partial discharge pulses on an oscilloscope, a high-pass filter was designed and assembled that suppresses the 50 Hz main frequency voltage, and is a 4th order Butterworth filter. The oscillogram of partial discharge pulses that occur near a surface of high-voltage electrode in an insulating gap with an electrical cardboard was obtained. It has been experimentally established that partial discharge impulses of different amplitudes arise in the insulating gap with an explicit polarity effect. The experimental oscillogram was adopted as a sample, to which the oscillogram should approach in the simulation. The electrical equivalent circuit for insulation is represented by a traditional three-capacitive equivalent circuit for a dielectric with a gas cavity.

As a result of the research it was established that it is possible to obtain results close to those observed in the physical experiment. The possibility of modeling partial discharges in a dielectric in the presence of two or more gas cavities is shown.


Keywords


circuit simulation; partial discharge; high-pass filter; Butterworth filter

Full Text:

PDF

References


Vdoviko, V. P. (2007). Chastichnye razriady v diagnostirovanii vysokovol'tnogo oborudovaniia. Novosibirsk: Nauka, 155.

Gulski, E. (1995). Digital analysis of partial discharges. IEEE Transactions on Dielectrics and Electrical Insulation, 2 (5), 822–837. doi: http://doi.org/10.1109/94.469977

Gemant, A., Philippoff, W. (1932). Die Funkenstrecke mit Vorkondensator. Zeitschrift für Technische Physik, 13 (9), 425–430.

Lemke, E. (2012). A critical review of partial-discharge models. IEEE Electrical Insulation Magazine, 28 (6), 11–16. doi: http://doi.org/10.1109/mei.2012.6340519

Deng, J., Wang, M., Zhou, Y., Zhou, Z., Zhang, Y., Zhang, L., Liu, X. (2016). Partial discharge characteristics of uniform gap in oil-impregnated paper insulation under switching impulse voltage. IEEE Transactions on Dielectrics and Electrical Insulation, 23 (6), 3584–3592. doi: http://doi.org/10.1109/tdei.2016.005508

Micro-Cap 11. Electronic Circuit Analysis Program. Reference Manual (2014). Sunnyvale: Spectrum Software, 1040. Available at: http://www.spectrum-soft.com/down/rm11.pdf

Trotsenko, Y., Brzhezitsky, V., Protsenko, O., Chumack, V., Haran, Y. (2017). Simulation of partial discharges under influence of impulse voltage. Technology Audit and Production Reserves, 1 (1 (39)), 36–41. doi: http://doi.org/10.15587/2312-8372.2018.123309

Trotsenko, Y., Brzhezitsky, V., Protsenko, O., Chumack, V., Haran, Y. (2017). Effect of voltage harmonics on pulse repetition rate of partial discharges. Technology Audit and Production Reserves, 2 (1 (40)), 37–44. doi: http://doi.org/10.15587/2312-8372.2018.126626

Gunawardana, S. D. M. S., Kanchana, A. A. T., Wijesingha, P. M., Perera, H. A. P. B., Samarasinghe, R., Lucas, J. R. (2015). A Matlab Simulink model for a partial discharge measuring system. Electrical Engineering Conference, 29–34.

Pahomov, A. I. (2005). Metody i sredstva diagnostiki izoliatsii asinhronnyh dvigatelei sel'skohoziaistvennogo proizvodstva na osnove chastichnyh razriadov. Krasnodar, 32.

Kolev, N. P., Danikas, M. G., Gadjeva, E. D., Gourov, N. R. (1999). Development of partial discharge model, simulation and measurement. 1999 Conference on Electrical Insulation and Dielectric Phenomena. Austin, 214–217. doi: http://doi.org/10.1109/ceidp.1999.804629

GOST 20074-83. Electrical equipment and installations. Method measurements of partial discharge characteristics. (1983). Moscow: Izdatel'stvo standartov, 22.

IEC 60270:2000. High-voltage test techniques – Partial discharge measurements. (2000). Geneva: IEC Central Office, 99.

Illias, H. A., Chen, G., Lewin, P. L. (2009). Modelling of Partial Discharge Activity in Different Spherical Cavity Sizes and Locations within a Dielectric Insulation Material. Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials. Harbin, 485–488. doi: http://doi.org/10.1109/icpadm.2009.5252384

Iossel, Yu. Ya., Kochanov, E. S., Strunskiy, M. G. (1981). Raschet elektricheskoy emkosti. Leningrad: Energoizdat, 288.

Makarov, E. F.; Goryunov, I. T., Lyubimova, A. A. (Eds.) (1999). Spravochnik po elektricheskim setyam 0.4-35 kV. Vol. 1. Moscow: Papirus Pro, 608.


GOST Style Citations


Vdoviko V. P. Chastichnye razriady v diagnostirovanii vysokovol'tnogo oborudovaniia. Novosibirsk: Nauka, 2007. 155 p.

Gulski E. Digital analysis of partial discharges // IEEE Transactions on Dielectrics and Electrical Insulation. 1995. Vol. 2, Issue 5. P. 822–837. doi: http://doi.org/10.1109/94.469977

Gemant A., Philippoff W. Die Funkenstrecke mit Vorkondensator // Zeitschrift für Technische Physik. 1932. Vol. 13, Issue 9. P. 425–430.

Lemke E. A critical review of partial-discharge models // IEEE Electrical Insulation Magazine. 2012. Vol. 28, Issue 6. P. 11–16. doi: http://doi.org/10.1109/mei.2012.6340519 

Partial discharge characteristics of uniform gap in oil-impregnated paper insulation under switching impulse voltage / Deng J. et. al. // IEEE Transactions on Dielectrics and Electrical Insulation. 2016. Vol. 23, Issue 6. P. 3584–3592. doi: http://doi.org/10.1109/tdei.2016.005508 

Micro-Cap 11. Electronic Circuit Analysis Program. Reference Manual. Sunnyvale: Spectrum Software, 2014. 1040 p. URL: http://www.spectrum-soft.com/down/rm11.pdf

Simulation of partial discharges under influence of impulse voltage / Trotsenko Y. et. al. // Technology Audit and Production Reserves. 2017. Vol. 1, Issue 1 (39). P. 36–41. doi: http://doi.org/10.15587/2312-8372.2018.123309 

Effect of voltage harmonics on pulse repetition rate of partial discharges / Trotsenko Y. et. al. // Technology Audit and Production Reserves. 2017. Vol. 2, Issue 1 (40). P. 37–44. doi: http://doi.org/10.15587/ 2312-8372.2018.126626 

A Matlab Simulink model for a partial discharge measuring system / Gunawardana S. D. M. S. et al. // Electrical Engineering Conference. 2015. P. 29–34.

Pahomov A. I. Metody i sredstva diagnostiki izoliatsii asinhronnyh dvigatelei sel'skohoziaistvennogo proizvodstva na osnove chastichnyh razriadov: Abstract of Doctor of Technical Sciences Thesis. Krasnodar, 2005. 32 p.

Development of partial discharge model, simulation and measurement / Kolev N. P. et. al. // 1999 Conference on Electrical Insulation and Dielectric Phenomena. Austin, 1999. P. 214–217. doi: http://doi.org/10.1109/ceidp.1999.804629 

GOST 20074-83. Elektrooborudovaniye i elektroustanovki. Metod izmereniya kharakteristik chastichnykh razryadov. Moscow: Izdatel'stvo standartov, 1983. 22 p.

IEC 60270:2000. High-voltage test techniques – Partial discharge measurements. Geneva: IEC Central Office, 2000. 99 p.

Illias H. A., Chen G., Lewin P. L. Modelling of Partial Discharge Activity in Different Spherical Cavity Sizes and Locations within a Dielectric Insulation Material // Proceedings of the 9th International Conference on Properties and Applications of Dielectric Materials. Harbin, 2009. P. 485–488. doi: http://doi.org/10.1109/icpadm.2009.5252384 

Iossel' Yu. Ya., Kochanov E. S., Strunskiy M. G. Raschet elektricheskoy emkosti. Leningrad: Energoizdat, 1981. 288 p.

Makarov E. F. Spravochnik po elektricheskim setyam 0.4-35 kV. Vol. 1. / ed. by Goryunov I. T., Lyubimova A. A. Moscow: Papirus Pro, 1999. 608 p.





DOI: https://doi.org/10.15587/2312-8372.2018.139942



Copyright (c) 2018 Yevgeniy Trotsenko, Volodymyr Brzhezitsky, Olexandr Protsenko, Vadim Chumack, Yaroslav Haran

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

ISSN (print) 2226-3780, ISSN (on-line) 2312-8372