Studying of the power modes in the traction line for ensuring the high-speed traffic

Authors

DOI:

https://doi.org/10.15587/2312-8372.2018.146665

Keywords:

traction power system, centralized power supply, distributed power, specific power, voltage level, high-speed motion

Abstract

The object of research is the power regimes in traction power systems for both centralized and distributed power when introducing high-speed traffic. The introduction of high-speed traffic on electrified railways of Ukraine has begun a number of restrictions in the applied system of traction power supply of centralized power supply. These include not only the impossibility of providing the necessary voltage level of 2.9 kV, but also the low efficiency of the aggregate power of traction substations. In this case, the applied traction power system does not allow to provide the necessary level of specific power in the traction network. Applicable technical means and measures to strengthen the traction network do not allow, in most cases, to provide regulatory requirements for the organization of high-speed traffic.

An analysis of modern research shows that overcoming these disadvantages is possible due to the application of a distributed power supply system to the traction network. To date, sufficient options have been developed for constructing such systems, but in this paper, as an alternative, a system was considered with the distribution of the aggregate power available in the system of centralized power in the inter-substation zone. At the same time it was reasonable to reduce the power of the traction substation to the level of 10 MW.

During the study of power regimes in comparable traction power systems, the results of experimental studies and simulation modeling of the operating modes of the comparable systems were used. Calculations were taken into account not only the specifics of the traction load, but also its impact on the load capacity of the contact suspension. As a result of this approach, it has been shown that the distributed traction power system allows to fulfill the regulatory requirements for providing high-speed traffic. With its application, the consumption of electric energy for traction of trains is reduced by 40 %, the specific power of traction network increases by 90 %, and the load factor of traction substations by 60 %.

The proposed innovative approach to providing the necessary power mode in the traction line for the organization of high-speed traffic allows to preserve the existing infrastructure on existing electrified section of direct current. This approach allows the application of various types of electric rolling stock and provides the required capacity of the railways.

Author Biographies

Petro Hubskyi, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, 2, Lazariana str., Dnipro, Ukraine, 49010

Postgraduate Student

Department of Intelligent Power Supply Systems

Valeriy Kuznetsov, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, 2, Lazariana str., Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor

Department of Intelligent Power Supply Systems

Anton Drubetskyi, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, 2, Lazariana str., Dnipro, Ukraine, 49010

PhD, Assistant

Department of Electric Rolling Stock

Andrii Afanasov, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, 2, Lazariana str., Dnipro, Ukraine, 49010

Doctor of Technical Sciences, Professor

Department of Electric Rolling Stock

Mykola Pulin, Regional Branch «Lviv Railway» of PJSC «Ukrzaliznytsia», 1, Gogol str., Lviv, Ukraine, 79000

Deputy Chief of Power Supply

References

  1. Sychenko, V. H., Bosyi, D. O., Kosariev, Ye. M. (2015). Optymizatsiia keruvannia rezhymom napruhy v tiahovii merezhi postiinoho strumu z punktamy pidsylennia. Visnyk Vinnytskoho politekhnichnoho instytutu, 6, 95–103.
  2. Sychenko, V. G., Bosiy, D. O., Kosarev, E. M. (2015). Improving the quality of voltage in the system of traction power supply of direct current. Archives of Transport, 35 (3), 63–70. doi: http://doi.org/10.5604/08669546.1185193
  3. Arzhannikov, B. A. (2010). Sistema upravlyaemogo elektrosnabzheniya elektrifitsirovannykh zheleznykh dorog postoyannogo toka. Ekaterinburg: UrGUPS, 176.
  4. Markvardt, K. G. (1958). Elektrosnabzhenie elektricheskikh zheleznykh dorog. Moscow: Transzheldorizdat, 288.
  5. Miroshnichenko, R. I. (1982). Rezhimy raboty elektrifitsirovannykh uchastkov. Moscow: Transport, 207.
  6. Miroshnichenko, R. I. (1973). Sravnitel'naya otsenka sposobov usileniya sistemy postoyannogo toka 3 kV. Vestnik Vsesoyuznogo nauchno-issledovatel'skogo instituta zh. d. transporta, 1, 1–12.
  7. Rоjek, A. (2012). Traction power supply in 3 kV DC system. Warshawa: KOW media&marketing Sp. Z o.o., 250.
  8. Shelag, A. (2013). Influence of voltage in 3 kV DC cafenary on traction and energy paramers of the supplied vehieles. Radom: Spatium, 158.
  9. Kislyakov, V. A. (1978). Sravnitel'naya otsenka tekhnicheskikh pokazateley razlichnykh sposobov usileniya elektrifitsirovannykh liniy postoyannogo toka. Sbornik trudov MIITa, 604, 3–21.
  10. Veksler, M. I. et. al. (1984). Usilenie ustroystv tyagovogo elektrosnabzheniya. Moscow: Transport.
  11. Sychenko, V. H., Saienko, Yu. L., Bosyi, D. O. (2015). Yakist elektrychnoi enerhii u tiahovykh merezhakh elektryfikovanykh zaliznyts. Dnipro: PF Standart-Servis, 344.
  12. Kosariev, Ye. M. (2015). Rehuliuvannia napruhy v kontaktnii merezhi elektryfikovanykh zaliznyts postiinoho strumu. Elektryfikatsiia transportu, 9, 37–43.
  13. Kotel'nikov, A. V. (2002). Elektrifikatsiya zheleznykh dorog. Mirovye tendentsii i prespektivy. Moscow: Intekst, 104.
  14. Calderaro, V., Galdi, V., Graber, G., Piccolo, A., Capasso, A., Lamedica, R., Ruvio, A. (2015). Energy management of Auxiliary Battery Substation supporting high-speed train on 3 kV DC systems. 2015 International Conference on Renewable Energy Research and Applications (ICRERA). doi: http://doi.org/10.1109/icrera.2015.7418603
  15. Hayashiya, H., Kikuchi, S., Matsuura, K., Hino, M., Tojo, M., Kato, T. et. al. (2013). Possibility of energy saving by introducing energy conversion and energy storage technologies in traction power supply system. 2013 15th European Conference on Power Electronics and Applications (EPE). Lille. doi: http://doi.org/10.1109/epe.2013.6631780
  16. Venikova, V. A. (Ed.) (1981). Elektricheskie sistemy. Matematicheskie zadachi elektroenergetiki. Moscow: Vysshaya shkola, 288.
  17. Kosariev, Ye. M. (2017). Matematychna model kerovanoi rozpodilenoi systemy tiahovoho elektropostachannia postiinoho strumu. Elektryfikatsiia transport, 14, 15–27.
  18. Kosariev, Ye. M., Bosyi, D. O. (2015). Kompiuterna prohrama «Intelektualna systema elektropostachannia transportu». 60711.
  19. Sychenko, V. H., Kosariev, Ye. M., Hubskyi, P. V., Zamaruiev, V. V., Ivakhno, V. V., Styslo, B. O. (2016). Doslidzhennia rezhymiv napruhy v systemi tiahovoho elektropostachannia postiinoho strumu. Elektryfikatsiia transportu, 11, 61–70.
  20. Dziuman, V. H., Sychenko, V. H., Kuznetsov, V. H., Kyryliuk, T. I. (2011). Doslidzhennia roboty systemy elektropostachannia postiinoho strumu pry propusku zdvoienykh poizdiv. Elektrotekhnika i elektromekhanika, 3, 74–76.
  21. Burkov, A. T., Burkov, S. A., Sharpilova, M. A. (2013). Rezhimy dvizheniya i osobennosti tyagovykh raschetov pri opredelenii nagruzok na ustroystva elektrosnabzheniya vysokoskorostnykh liniy. Eltrans-2011. Saint Petersburg: Peterburg. gos. un-t putey soobshheniya, 584.
  22. Marskiy, V. E. (2010). Podgotovka tyagovogo elektrosnabzheniya dlya organizatsii skorostnogo dvizheniya na linii Sankt-Peterburg-Moskva. Tokos'em i tyagovoe elektrosnabzhenie pri vysokoskorostnom dvizhenii na postoyannom toke. Moscow: Intekst, 15–19.
  23. Snizhenie raskhoda energii v poezde putem optimizatsii metodov regulirovaniya (2003). Zheleznye dorogi mira, 1, 31–35.
  24. Arzhannikov, B. A., Burkov, A. T., Galkin, A. G., Mansurov, V. A., Naboychenko, I. O. (2012). Perspektiva razrabotki sistemy elektricheskoy tyagi postoyannogo toka povyshennogo napryazheniya 24 kV dlya skorostnoy magistrali Moskva-Ekaterinburg. Trendy. Sobytiya. Rynki, 7, 48–50.
  25. Ustenko, A. V. (2013). Razvitie vysokoskorostnogo zheleznodorozhnogo transporta. Zbіrnik naukovikh prats' UkrDAZT, 136, 49–55.
  26. Razvitie vysokoskorostnogo transporta (2007). Zheleznye dorogi mira, 10, 9–17.
  27. Marikin, A. N., Mizintsev, A. V. (2008). Novye tekhnologii v sooruzhenii i rekonstruktsii tyagovykh podstantsiy. Moscow: Marshrut, 220.
  28. Arzhannikov, B. A. (2008). Dva varianta usileniya sistemy elektrosnabzheniya tyagi postoyannogo toka. Available at: http://www.eav.ru/publ1.php?publid=2008-04a18
  29. Ter-Oganov, E. V., Pyshkin, A. A. (2014). Elektrosnabzhenie zheleznykh dorog. Ekaterinburg: Izd-o UrGUPS, 431.
  30. Arzhannikov, B. A. (2009). Vozmozhnosti sistemy elektrosnabzheniya postoyannogo toka dlya propuska skorostnykh passazhirskikh i gruzovykh poezdov povyshennogo vesa. Available at: http://www.eav.ru/publ1.php?publid=2009-10a21
  31. Panasenko, M. V., Honcharov, Yu. P., Sychenko, V. H., Bozhko, V. V. (2010). Pat. No. 51917. Peretvoriuvalnyi ahrehat dlia tiahovoi pidstantsii postiinoho strumu. MPK: N02M 7/00 / No. u201000364; declareted: 15.01.2010; published: 10.08.2010. Bul. No. 15.
  32. Marikin, A. N., Samonin, A. P., Zhemchugov, V. G. (2012). Sposoby usileniya tyagovogo elektrosnabzheniya postoyannogo toka pri intensivnom dvizhenii poezdov. Izvestiya Peterburgskogo universiteta putey soobshheniya, 3, 123–127. Available at: https://cyberleninka.ru/article/n/sposoby-usileniya-tyagovogo-elektrosnabzheniya-postoyannogo-toka-pri-intensivnom-dvizhenii-poezdov
  33. Bosyi, D. O. (2014). Metodyka rozrakhunku myttievykh skhem systemy tiahovoho elektropostachannia dlia spozhyvannia postiinoi potuzhnosti. Elektryfikatsiia transport, 8, 15–25.

Published

2018-05-17

How to Cite

Hubskyi, P., Kuznetsov, V., Drubetskyi, A., Afanasov, A., & Pulin, M. (2018). Studying of the power modes in the traction line for ensuring the high-speed traffic. Technology Audit and Production Reserves, 5(1(43), 42–51. https://doi.org/10.15587/2312-8372.2018.146665

Issue

Section

Technology and System of Power Supply: Original Research