Research of methods and technologies for determining the position of the mobile object in space
DOI:
https://doi.org/10.15587/2312-8372.2018.147861Keywords:
SLAM method algorithms, positioning, mobile object, technical visionAbstract
The object of research is the process of tracking the position of a mobile object in space. One of the weakest points in tracking systems for the position of a mobile object in space is the problem of eliminating the ambiguity of determining key points when scanning the environment. This problem is especially important when several methods (or technologies) of position tracking are applied simultaneously. There is a need for additional calibration and adjustment.
The study used the results of the analysis of methods and technologies for automatically determining the position and orientation of three-dimensional objects using technical vision systems. Analysis of the considered popular systems and methods for measuring the spatial position of objects, as well as algorithms and navigation technologies of a mobile robot, has shown that each of the considered systems has its advantages and disadvantages. And it is used depending on the objectives of this system.
A comparative analysis of the main types of algorithms of the SLAM method has been carried out. The perspectives of this method – the use of artificial intelligence methods and an extended Kalman filter – improve the speed of the SLAM method. Proof of this is the huge number of open projects to create this type of navigation in various competitions:
- VSLAM – implementation of the SLAM method based on computer vision methods;
- RGBDSLAM – package for registering a cloud of points with RGBD sensors, such as Kinect or stereo cameras;
- Hector_mapping – SLAM for platforms without odometer – only based on data from LIDAR, etc.
References
- Potapov, A. (2014). Sistemy komp'yuternogo zreniya: sovremennye zadachi i metody. Control Engineering, 1 (49), 20–26.
- Newcombe, R. A., Lovegrove, S. J., Davison, A. J. (2011). DTAM: Dense tracking and mapping in real-time. IEEE International Conferenceon Computer Vision (ICCV). Barcelona, 2320–2327. doi: http://doi.org/10.1109/iccv.2011.6126513
- Engel, J., Schöps, T., Cremers, D. (2014). LSD-SLAM: Large-Scale Direct Monocular SLAM. Lecture Notes in Computer Science. Cham, 834–849. doi: http://doi.org/10.1007/978-3-319-10605-2_54
- Mur-Artal, R., Montiel, J. M. M., Tardos, J. D. (2015). ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, 31 (5), 1147–1163. doi: http://doi.org/10.1109/tro.2015.2463671
- Werner, C., Werner, S., Schöne, R., Götz, S., Aßmann, U. (2018). Self-adaptive Synchronous Localization and Mapping using Runtime Feature Models. Proceedings of the 7th International Conference on Data Science, Technology and Applications, 1, 409–418. doi: http://doi.org/10.5220/0006945504090418
- Nechyporenko, O. V., Korpan, Ya. V. (2016). Biometrychna identyfikatsiia i avtentyfikatsiia osoby za heometriieiu oblychchia. Visnyk Khmelnytskoho natsionalnoho universytetu, 4, 133–138.
- Nechyporenko, O., Korpan, Y. (2017). Analysis of methods and technologies of human face recognition. Technology Audit and Production Reserves, 5 (2 (37)), 4–10. doi: http://doi.org/10.15587/2312-8372.2017.110868
- Miroshnichenko, N. (2018). Mirovoy rynok AR dostignet ob"ema v 198 milliardov dollarov k 2025 godu. BIS Research. Novosti VR industrii. Available at: https://vrgeek.ru/mirovoj-rynok-ar-dostignet-obema-v-198-milliardov-dollarov-k-2025-godu/2018
- Santos, F. M., Silva, V. F., Almeida, L. M. (2002). A robust self-localization system for a small mobile autonomous robot. International Symphosium on Robotics and Automation, 1–6. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.134.2502
- Antoni, D., Ban, Z., Zagar, M. (2001). Demining Robots – Requirements and Constraints. Automatika, 42 (3-4), 189–197.
- Melo, L. F. de, Rosário, J. M., Junior, A. F. da S. (2013). Mobile Robot Indoor Autonomous Navigation with Position Estimation Using RF Signal Triangulation. Positioning, 4 (1), 20–35. doi: http://doi.org/10.4236/pos.2013.41004
- Zakharov, A. A., Tuzhilkin, A. Yu., Vedenin, A. S. (2014). Algoritm opredeleniya polozheniya i orientatsii trekhmernykh obektov po videoizobrazheniyam na osnove veroyatnostnogo podkhoda. Fundamentalnye issledovaniya, 11-8, 1683–1687.
- Menache, A. (2011). Understanding motion capture for computer animation. The Morgan Kaufmann Series In Computer Graphics, 254.
- Tobon, R. (2010). The Mocap Book: A Practical Guide to the Art of Motion Capture. Forisforce, 258.
- Nguyen, V., Harati, A., Siegwart, R. (2007). Lightweight SLAM algorithm using orthogonal planes for indoor mobile robotics. Intelligent Robots and Systems, 658–663. doi: http://doi.org/10.1109/iros.2007.4399512
- Yuldashev, M. N. (2015). Ul'trazvukovye sistemy dlya opredeleniya prostranstvennogo polozheniya podvizhnogo obekta. Naukoemkie tekhnologii i intellektual'nye sistemy 2015. Moscow: MGTU im. N. E. Baumana, 465–472.
- Nechyporenko, O. V., Korpan, Y. V., Nechyporenko, O. V., Khomchenko, O. S. (2018). Methods and technologies of monitoring of the position of a mobile object in space. Kompiuterne modeliuvannia ta optymizatsiia skladnykh system (KMOSS-2018). Dnipro: Balans-klub, 193–195.
- Aulinas, J. (2008). The SLAM Problem: A Survey. Proceedings of the 2008 Conference on Artificial Intelligence Research & Development, 363–71. Available at: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.163.6439
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2018 Olga Nechyporenko, Yaroslav Korpan
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.