Development of a method for obtaining sorbent from bagasse of sweet sorghum for neutralization of soil contamination by heavy metal ions

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.155537

Keywords:

waste mercerization, sorbent for cleaning soils, sweet sorghum, lignocellulosic bagasse

Abstract

The object of research is the industrial waste of plant raw materials of sweet sorghum (lignocellulosic bagasse) and a modified sorbent created on its basis for cleaning soils contaminated with heavy metal ions. Traditionally, the modification of plant materials to obtain sorbents involves the oxidation (hydrolysis) of plant material under the action of strong mineral acids at high temperature. After acid treatment, alkaline activation and repeated washing of the sorbent is carried out until neutral wash water. The yield of the sorbent is 20–30 % by weight of raw materials. In addition, a significant amount of decomposition products and large volumes of hazardous wastewater are generated. Therefore in the course of the study, a mercerization method was used to obtain a sorbent – treating lignocellulosic bagasse with an alkali solution.

The main components of lignocellulosic bagasse are lignin and cellulose, connected in biopolymer complexes. In their raw form, they have weak sorption properties through the fibrillary structure and low content of free functional groups in them. Under the conditions of the mercerization process, the molecular bonds between the fibers of the biopolymers are partially destroyed and the solution of low molecular weight polysaccharides is dissolved. The structural framework of the lignocellulosic matrix is preserved, and its ability to swell is growing. Integrity is preserved, vegetable fibers improve their structural-porous structure by increasing the internal adsorption surface. The optimal conditions for the mercerization process are a hydro module of 1:10 with an initial alkali concentration of 120 g/l. The maximum sorption values of heavy metal ions increase by a factor of 2–3. The sorbent yield reaches 60–80 %. In addition, the advantage of this method is the absence of harmful wastewater.

The developed method can be used for processing waste and other plant materials (corn, sunflower, sugar cane, etc.), and the resulting sorbent is used in agricultural technologies for neutralization of soils contaminated with heavy metal ions.

Author Biographies

Natalia Grygorenko, Institute of Bioenergy Crops and Sugar Beet of the NAAS of Ukraine, 25, Klinichna str., Kyiv, Ukraine, 03141

PhD, Senior Researcher, Head of Laboratory

Laboratory of Molecular Genetic Polymorphism

Lidia Kupchik, Institute for Sorption and Problems of Endoecology of the NAAS of Ukraine, 13, General Naumov str., Kyiv, Ukraine, 03164

PhD, Senior Researcher

Department of Sorbents for Medical and Environmental Purposes

Nadezhda Stangeeva, National University of Food Technologies, 68, Volodymyrska str., Kyiv, Ukraine, 01601

Doctor of Technical Sciences, Professor

Department of Sugar Technology and Water Preparation

References

  1. Vasil'ev, A. (2000). Sovremennye podkhody k resheniyu problemy zagryazneniya pochv tyazhelymi metallami. Ekotekhnologii i resursosberezhenie, 5, 47–52.
  2. Ellis, D. I. (2008). Intehrovani inzhenerni ta naukovi metody pererobky zabrudnenykh gruntiv. Khimiia v interesakh staloho rozvytku, 2, 285.
  3. Kulakow, P. A., Pidlisnyuk, V. V. (Eds.) (2010). Application of Phytotechnologies for Cleanup of Industrial, Agricultural and Waste Water Contamination. Dordrecht: Vetlag: Springer, 196. doi: http://doi.org/10.1007/978-90-481-3592-9
  4. Witters, N., Mendelsohn, R. O., Van Slycken, S., Weyens, N., Schreurs, E., Meers, E. et. al. (2012). Phytoremediation, a sustainable remediation technology? Conclusions from a case study. I: Energy production and carbon dioxide abatement. Biomass and Bioenergy, 39, 454–469. doi: http://doi.org/10.1016/j.biombioe.2011.08.016
  5. Yakovishina, T. F. (2008). Ecological estimation of the sorbent-meliorate influence to the fertility agrochemical indexes by the detox cation of the heavy metals in the soil. Ekolohiia i pryrodokorystuvannia, 11, 153–158. URL: http://dspace.nbuv.gov.ua/handle/123456789/14402
  6. Slizovskiy, I. B., Kelsey, J. W., Hatzinger, P. B. (2010). Surfactant-facilitated remediation of metal-contaminated soils: Efficacy and toxicological consequences to earthworms. Environmental Toxicology and Chemistry, 30 (1), 112–123. doi: http://doi.org/10.1002/etc.357
  7. Lopes, C., Herva, M., Franco-Uría, A., Roca, E. (2011). Inventory of heavy metal content in organic waste applied as fertilizer in agriculture: evaluating the risk of transfer into the food chain. Environmental Science and Pollution Research, 18 (6), 918–939. doi: http://doi.org/10.1007/s11356-011-0444-1
  8. Khokhlov, A. V., Khokhlova, L. I, Breus, I. P. (2009). Perspektivy ispol'zovaniya immobilizovannykh mikroorganizmov-destruktorov dlya ochistki ekosistem ot ksenobiotikov. Gigiena i sanitariya, 5, 91–96.
  9. Belyaev, E. Yu., Belyaeva, L. E. (2000). Ispol'zovanie rastitel'nogo syr'ya v reshenii problem zashhity okruzhayushhey sredy. Khimiya v interesakh ustoychivogo razvitiya, 8, 763–772.
  10. Hryhorenko, N. O., Shtanheieva, N. I., Kupchyk, L. A. (2017). Pererobka vidkhodiv tsukrovoho sorho (bahasy) z metoiu otrymannia sorbentiv. Tsukor Ukrainy, 3, 33–36.
  11. Hryhorenko, N. O., Kupchyk, L. A., Denysovych, V. O. (2018). Vyluchennia ioniv midi lihnifikovanoiubahasoiu iz vodnykh vytiazhok grunti. Naukovi dopovidi NUBiP Ukrainy, 2 (72). Available at: http://journals.nubip.edu.ua/index.php/Dopovidi/article/view/10638/9355
  12. Kartel', N. T., Kupchik, L. A., Nikolaychuk, A. A. (2007). Sintez i svoystva biosorbentov, poluchennykh na osnovetsellyulozno-ligninovogo rastitel'nogo syr'ya – otkhodov agropromyshlennogo kompleksa. Sorbtsionnye i khromatograficheskie protsessy, 7 (3), 489–498.
  13. Rogovin, Z. A. (1972). Khimiya tsellyulozy. Moscow: Khimiya, 520.
  14. Smolin, A. S., Dubovyy, V. K., Komarov, D. Yu., Kanarskiy, A. V. (2016). Pennyy sposob formovaniya fil'troval'noy bumagi na tsellyuloznoy osnove. Vestnik Tekhnologicheskogo universiteta, 19 (15), 86–88.
  15. Dubovoy, E. V., Koverninskiy, I. N., Smolin, A. S., Kanarskiy, A. V. (2017). Adgezionnye svoystva steklyannogo volokna i povyshenie prochnosti bumagi dobavkoy merserizovannoy tsellyulozy. Vestnik Tekhnologicheskogo universiteta, 20 (12), 53–55.
  16. Azarov, V. I., Burov, A. V., Obolenskaya, A. V. (1999). Khimiya drevesiny i sinteticheskikh polimerov. Saint Petersburg, 627.
  17. Chae, D. W., Choi, K. R., Kim, B. C., Oh, Y. S. (2003). Effect of Cellulose Pulp Type on the Mercerizing Behavior and Physical Properties of Lyocell Fibers. Textile Research Journal, 73 (6), 541–545. doi: http://doi.org/10.1177/004051750307300613
  18. Wang, J., Chen, C. (2009). Biosorbents for heavy metals removal and their future. Biotechnology Advances, 27 (2), 195–226. doi: http://doi.org/10.1016/j.biotechadv.2008.11.002
  19. GOST 20255.1-89. (2002). Ionity. Metody opredeleniya staticheskoy obmennoy emkosti. Vveden 1991-01-01. Moscow: Izd-vo standartov, 5.
  20. Klark, E., Eberkhard, K. (2007). Mikroskopicheskie metody issledovaniya materialov. Moscow: TEKHNOSFERA, 326–339.
  21. DSTU 4287:2004. Yakist gruntu. Vidbyrannia prob. (2004). Chynnyi vid 2004-04-30. Kyiv: Derzhspozhyvstandart Ukrainy, 9.
  22. DSTU 4770.1:2007. (2007). Yakist gruntu. Vyznachennia vmistu rukhomykh spoluk marhantsiu (tsynku, kadmiiu, zaliza, kobaltu, midi, nikeliu, khromu, svyntsiu) v grunti v bufernii amoniino-atsetatnii vytiazhtsi z rN 4,8 metodom atomno-absorbtsiinoi spektrofotometrii. Chynnyi vid 2009-01-01. Kyiv: Derzhspozhyvstandart Ukrainy, 18.
  23. Borowski, M. (Eds.) (2011). Perovskites. Structure, Properties and Uses. New York: Nova Science Publishers, 586.
  24. Sedin, A. V., Orlovskaya, T. V., Gavrilin, M. V. (2014). Ispol'zovanie metoda IK-spektroskopii dlya analizarastitel'nogosyr'ya. Sovremennye problemy nauki i obrazovaniya, 1, 45–49.
  25. Hryshko, V. M., Syshchykov, D. V., Piskova, O. M. et. al. (2012). Vazhki metaly: nadkhodzhennia v grunty, trans lokatsiia u roslynakh ta ekolohichna bezpeka. Donetsk: Donbas, 304.

Published

2018-12-20

How to Cite

Grygorenko, N., Kupchik, L., & Stangeeva, N. (2018). Development of a method for obtaining sorbent from bagasse of sweet sorghum for neutralization of soil contamination by heavy metal ions. Technology Audit and Production Reserves, 1(3(45), 9–15. https://doi.org/10.15587/2312-8372.2019.155537

Issue

Section

Ecology and Environmental Technology: Original Research