Justification of the method for phytoremediation of degraded and contaminated lands by composite vermicompost briquettes

Authors

DOI:

https://doi.org/10.15587/2312-8372.2019.183078

Keywords:

land phytoremediation, vermicultivation technology, vermicompost products, California worm, composite briquette

Abstract

The object of research is the effectiveness of the use of vermicompost products of vermicultivation in the practice of phytoremediation of degraded and technogenic contaminated lands. One of the problematic aspects in solving the scientific problem of reclamation of lands degraded as a result of technogenic activity is the long-term stage of biological restoration of the disturbed landscape. For a more efficient and quick reclamation, it is advisable to create a phytocenosis from tree-shrub vegetation, resistant to negative environmental influences. Well-tested biotechnologies of vermicultivation create the prerequisites for the use of waste products of the colonies of the worms of the genus Eisenia in the form of composite vermicompost briquettes for the needs of land phytoremediation, and it is proved in the study.

The analysis of literary sources using modern technologies of vermicultivation and the use of vermicompost products for the needs of agriculture and land phytoremediation is carried out. The growth process of the biomass of worms of the Eisenia fetida species and the accumulation of vermicompost over time depending on the temperature of the medium are studied. The results of laboratory bioindication experiments with composite briquettes, consisting of vermicompost, loam and seeds of wild cereals, are presented. It is determined that the ratio of vermicompost and loam in the composition of composite briquettes, which is the most optimal for plant growth indicators, is 60:40 and 40:60 by mass, which makes it possible to justify the phytomeliorant working mixtures for biological land reclamation technologies.

Laboratory studies have shown the promise of using vermicompost as a product of vermicultivation in the form of composite briquettes in the practice of phytoremediation of disturbed lands.

Author Biographies

Oleksandr Kovrov, National Technical University «Dnipro Polytechnic», 19, Dmytra Yavornytskoho ave., Dnipro, Ukraine, 49005

PhD, Associate Professor, Professor

Department of Ecology and Environmental Protection Technologies

Iryna Klimkina, National Technical University «Dnipro Polytechnic», 19, D. Yavornytskoho ave., Dnipro, Ukraine, 49005

PhD, Associate Professor

Department of Ecology and Environmental Technology

Liana Kodachenko, National Technical University «Dnipro Polytechnic», 19, D. Yavornytskoho ave., Dnipro, Ukraine, 49005

Department of Ecology and Environmental Technology

References

  1. Panas, R. M. (2005). Rekultyvatsiia zemel. Lviv: Novyi svit, 224.
  2. Syvyi, M., Paranko, I., Ivanov, Ye. (2013). Heohrafiia mineralnykh resursiv Ukrainy. Lviv: Prostir M, 684.
  3. Yeterevska, L. V. (1977). Rekultyvatsiia zemel. Kyiv: Urozhai, 128.
  4. Panas, R. N. (1989). Agroekologicheskie osnovy rekultivacii zemel. Lvov: Izd-vo pri Lvov. un-te, 160.
  5. Ivanov, Ye. A. (2000). Ekoloho-landshaftoznavchi osnovy rekultyvatsii hirnychopromyslovykh terytorii. Problemy landshaftnoho riznomanittia Ukrainy. Kyiv, 221–225.
  6. Nadtochii, P. P., Myslyva, T. M. (2007). Okhorona ta ratsionalne vykorystannia pryrodnykh resursiv i rekultyvatsiia zemel. Zhytomyr, 420.
  7. Demydov, O. A. (2014). Udoskonalennia klasyfikatsii rekultyvovanykh gruntiv. Nauk. dopovidi NUBiP Ukrainy, 1. Available at: http://nbuv.gov.ua/jpdf/Nd_2014_1_8.pdf
  8. Kovalchuk, I. P., Ivanov, Ye. A., Andreichuk, Yu. M. (2016). Aktualni problemy optymizatsii postmaininhovykh heosystem. Zemleustrii, kadastr ta okhorona zemel v Ukraini: suchasnyi stan, yevropeiski perspektyvy. Kyiv, 202–206.
  9. Henyk, Ya. V. (2013). Tekhnolohichna klasyfikatsiia porushenykh ekosystem z metoiu yikh revitalizatsii. Naukovyi visnyk NLTU Ukrainy, 23.3, 103–108.
  10. Kostecka, J., Garczyńska, M., Podolak, A., Pączka, G., Kaniuczak, J. (2018). Kitchen Organic Waste as Material for Vermiculture and Source of Nutrients for Vermicompost Plants. Journal of Ecological Engineering, 19 (6), 267–274. doi: http://doi.org/10.12911/22998993/99691
  11. Chanu, T. I., Sharma, A., Ande, M. P., Prasad, J. K., Patnaik, R. R. S. (2017). Vermicompost Production Technology for Organic Aquaculture. Aquaculture Times, 24–28.
  12. Kolesnyk, N., Simon, M., Marenkov, O., Sharamok, T. (2018). Red Californian earthworm (Eisenia foetida andrei) as a valuable food item in fish farming (review). Ribogospodarsʹka Nauka Ukraini, 4 (46), 26–48. doi: http://doi.org/10.15407/fsu2018.04.026
  13. Byambas, P., Hornick, J. L., Marlier, D., Francis, F. (2019). Vermiculture in animal farming: A review on the biological and nonbiological risks related to earthworms in animal feed. Cogent Environmental Science, 5 (1). doi: http://doi.org/10.1080/23311843.2019.1591328
  14. Merzlov, S. V., Mashkin, Y. O., Merzlova, G. V., Vovkohon, A. V. (2017). Californian red worm biomass increase and its cobalt accumulation under different concentrations of the metal in nutrient medium. Ukrainian Journal of Ecology, 7 (4), 525–528. doi: http://doi.org/10.15421/2017_155
  15. Castañeda Torres, S., Rodriguez Miranda, J. P. (2017). Modelo de aprovechamiento sustentable de residuos sólidos orgánicos en Cundinamarca, Colombia. Universidad y Salud, 19 (1), 116–125. doi: http://doi.org/10.22267/rus.171901.75
  16. Camacho Barboza, J., Morales, H., Alvarado Barrantes, R., Saldivar Moreno, A., Huerta Lwanga, E. (2011). Perceptions and attitudes regarding organic waste: Feasibility of establishing an urban composting program in Chiapas, Mexico. Journal of Agriculture, Food Systems, and Community Development, 1 (3), 115–131. doi: http://doi.org/10.5304/jafscd.2011.013.006
  17. Shrestha, P., Bellitürk, K., Görres, J. (2019). Phytoremediation of Heavy Metal-Contaminated Soil by Switchgrass: A Comparative Study Utilizing Different Composts and Coir Fiber on Pollution Remediation, Plant Productivity, and Nutrient Leaching. International Journal of Environmental Research and Public Health, 16 (7), 1261. doi: http://doi.org/10.3390/ijerph16071261
  18. Sezgin, M., Şimşek, E. (2017). Bazı orman ağacı ve çalı türleri tohumlarının çimlendirilmesinde vermikompost ürünlerinin etkileri. Artvin Çoruh Üniversitesi Orman Fakültesi Dergisi, 18 (1), 78–82. doi: http://doi.org/10.17474/artvinofd.282604
  19. Antunes, R. M., Leal, O. dos A., Castilhos, R. M. V., Castilhos, D. D., Andreazza, R., Schwalbert, R. A. (2019). Humic Substances and Chemical Properties of an Acrisol Amended with Vermicomposted Vegetal and Animal Residues. Revista Brasileira de Ciência Do Solo, 43. doi: http://doi.org/10.1590/18069657rbcs20180032
  20. Kharitonov, N. N., Kulik, A. P., Garmash, S. N., Melnichuk, T. M. (2003). Issledovanie effektivnosti biogumata – produkta pererabotki rastitelnykh otkhodov vermikulturoi Eisenia foetida. Voprosy khimii i khimicheskoi tekhnologii, 4, 128–130.
  21. Kulik, A. P., Garmash, S. N. (2000). Tekhnologiia pererabotki otkhodov selskokhoziaistvennogo proizvodstva. Novosti Ukrainskogo obschestva inzhenerov i mekhanikov. Biulleten, 2 (1-2), 55–56.

Published

2019-07-25

How to Cite

Kovrov, O., Klimkina, I., & Kodachenko, L. (2019). Justification of the method for phytoremediation of degraded and contaminated lands by composite vermicompost briquettes. Technology Audit and Production Reserves, 5(3(49), 28–32. https://doi.org/10.15587/2312-8372.2019.183078

Issue

Section

Ecology and Environmental Technology: Original Research