Development of implicit method for numerical modeling of turbomachine blade thermoelastic vibrations
DOI:
https://doi.org/10.15587/2312-8372.2019.184169Keywords:
numerical methods, theory of elasticity, turbine blade dynamics, aerothermoelastics, gas-turbine engineAbstract
There was a tendency in recent decades to increase the combustion temperature in gas-turbine engines (GTE). This allows increasing both the efficiency of the engine and the output power. In modern engines, the temperature of the exhaust gas is already significantly higher than the melting temperature of blade material. In this regard, in the design of GTE turbines there is a need to use numerical methods that allow the most reliable modeling of unsteady aerothermoelastic effects. One of the components of the aerothermoelastic problem is to integrate the unsteady equations of thermoelasticity together with the equations of aerodynamics. As these equations must be solved together with a single step in time, implicit numerical integration methods should be preferred. The object of research is the unsteady interaction of thermoelastic vibrations of the turbine blades and gas flow.
This paper presents an implicit numerical method for modeling thermoelastic vibrations of the GTE turbine flow parts, including turbine blades with cooling channels. The method is based on equations of linear thermoelasticity, which are integrated by the finite element method. The investigated volume is divided into cells, forming a calculation grid with hexahedrons with additional nodes. The compute nodes are selected so that one element has 20 nodes. The approximation of the parameters in the element is performed using third-degree polynomials. Time integration is also performed with third-order accuracy.
The results of testing the method on test problems, as well as comparing the results of the vibrations simulation of the standard configuration blades with the results of other authors are shown. The discrepancy of the results does not exceed 0.4 % for the test problem and 0.7 % for the blade vibrations. The obtained results indicate that the presented method can be used for numerical simulation of the unsteady thermoelastic vibrations of the gas-turbine engine flow parts.
References
- Vorobev, Iu. S., Diakonenko, K. Iu., Kulishov, S. B., Skrickii, A. N. (2009). Vliianie temperaturnoi neodnorodnosti na kolebaniia okhlazhdaemykh monokristallicheskikh lopatok gazovykh turbin. Vestnik dvigatelestroeniia, 3, 140–143.
- Miroshnichenko, S. T., Pukhlii, V. A. (2009). K raschetu centrobezhnykh nasosov v iadernoi energetike. Sbornik nauchnykh trudov SNUIAEtaP, 3, 31–40.
- Grinberg, S. M. (1969). K raschetu chastot kolebanii lopatok kompressora metodami teorii obolochek. Prochnost i dinamika aviacionnykh dvigatelei, 5, 242–255.
- Bendiksen, O. O. (1998). Nonlinear Blade Vibration and Flutter in Transonic Rotors. Proc. of ISROMAC-7, 664–673.
- Moyroud, F., Jacquet-Richardet, G., Fransson, T. H. (2000). Aeroelasticity in Turbomachines: Some Aspects of the Effect of Coupling Modeling and Blade Material Changes. International Journal of Rotating Machinery, 6 (4), 265–273. doi: http://doi.org/10.1155/s1023621x00000257
- Gnesin, V. I., Kolodiazhnaia, L. V. (2009). Chislennii analiz vliianiia sootnosheniia chisel lopatok statora i rotora na nestacionarnye nagruzki i rezhimy kolebanii lopatok. Vestnik NTU «KHPI». Seriia: Energeticheskie i teplotekhnicheskie processy i oborudovanie, 3, 23–32.
- Vorobev, Iu. S., Chernobryvko, M. V., Chugai, M. A., Romanenko, V. N. (2010). Problemy chislennogo analiza dinamiki elementov sovremennykh konstrukcii. Vestnik SevNTU, 110, 20–25.
- Gnesin, V. I., Kolodiazhnaia, L. V., Zhandkovski, R. (2009). Aerouprugoe povedenie poslednei stupeni turbomashiny na nominalnom i chastichnom rezhimakh v trekhmernom potoke viazkogo gaza. Problemy mashinostroeniia, 12 (6), 8–18.
- Koltunov, M. A., Kravchuk, A. S., Maiboroda, V. P. (1983). Prikladnaia mekhanika deformiruemogo tverdogo tela. Moscow: Vysshaia shkola, 349.
- Pobedria, B. E. (1995). Chislennye metody v teorii uprugosti i plastichnosti. Moscow: Izd-vo MGU, 366.
- Kupradze, V. D. (1976). Trekhmernye zadachi matematicheskoi teorii uprugosti i termouprugosti. Moscow: Nauka, 664.
- Kovalenko, A. D. (1975). Termouprugost. Kyiv: Vischa shkola, 216.
- Novackii, V. (1970). Dinamicheskie zadachi termouprugosti. Moscow: Mir, 256.
- Bykov, Iu. A. (2009). Chislennoe modelirovanie techeniia v reshetke kolebliuschikhsia profilei s uchetom teploobmena. Problemy mashinostroeniia, 12 (5), 36–41.
- Bykov, Iu. A., Gnesin, V. I. (2011). Numerical simulation of elastic vibrations of turbomachinery blades. Eastern-European Journal of Enterprise Technologies, 3 (7 (51)), 62–65. Available at: http://journals.uran.ua/eejet/article/view/1631
- Babakov, I. M. (1968). Teoriia kolebanii. Moscow: Nauka, 560.
- Bykov, Iu. A., Gnesin, V. I. (2011). Chislennoe modelirovanie termouprugikh kolebanii lopatok turbomashin. Vestnik NTU "KHPI", 33, 43–47.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2019 Yuri Bykov
This work is licensed under a Creative Commons Attribution 4.0 International License.
The consolidation and conditions for the transfer of copyright (identification of authorship) is carried out in the License Agreement. In particular, the authors reserve the right to the authorship of their manuscript and transfer the first publication of this work to the journal under the terms of the Creative Commons CC BY license. At the same time, they have the right to conclude on their own additional agreements concerning the non-exclusive distribution of the work in the form in which it was published by this journal, but provided that the link to the first publication of the article in this journal is preserved.